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Abstract
Internet Of Things in these years is becoming an increasingly studied topic. We define Internet Of
Things as a variety of technologies that allow us to connect objects to the network. For instance, we
can connect cameras, sensors, speakers and use them over long distances. In the next years connect
objects to the network will be widespread, and the connections will grow up every year. Just think
to smart cities, autonomous driving and robotics, in the future they will impact more and more in
our lives. Internet traffic is constantly increasing, the devices connected to the network grow up very
fast every year. With the introduction of 5G networks, the connections performace will be increased,
allowing us to use more devices together, and reduce the latency time. You can image to have multiple
connection at the same time, for example, you can use your smartphone to control the temperature in
your house, check your security camera, control in real time the situation of the traffic on the road and
many other things. Sensors connected to the network, lately are used for the security and maintenance
of our roads, monitoring the stability of bridges and viaducts. IoT devices can be employable in a
lot of different fields, from medical and public security to simply for all the things we do everyday,
improving our quality of life. Therefore, the Internet of Things (IoT) holds a great potential for the
development of innovative applications. Hence the need to filter and dispach the traffic to optimise our
networks, we want fast and reliable connections, therefore we need methods to separate different types
of communications. These devices uses specific protocols, called ”IoT procotols”, they have different
features compared to the traditional protocols. For this reason, network operators must support these
devices with differentiated services, which rely on the ability to automatically recognize and classify
the nature of the communication flows. Mobile network operators have implemented systems that
allow to separate different traffic from different services. For instance, you can count only the amount
of data used by a set of specific applications (e.g. Facebook, Whatsapp, Instagram). Furthermore,
methods to control the internet flows are used to check protocol anomalies, propagations of malware,
or simply collect statistical data on the use of the networks themselves. Analyzing the flows instead of
the single packets allow us to scan encrypted communications. This kind of analysis is called ”deep flow
inspection”, the classification is made by considering the overall behavior of the flow of packets. In our
case we consider different types of features to compute the classification (e.g. packet length fraction,
round trip time, frequency of sent and received packets). In this thesis we discuss statistical methods
to analyze packets flows and classify them as traffic that belongs to IoT devices or to traditional, non-
IoT communication. The methods work by operating on a training dataset. We start by presenting
the methods employed to collect the flow data used in the study, which comes from both simulation
and from real deployments. Then we give details regarding the tools used for capturing, analyzing
and classifying the flows. We use two types of flows attributes for the training datasets, the first set
of attributes comes from the analysis of the packets statistics (e.g. acknowledgment packets fraction,
packets length fraction), the second set of attributes comes from the analysis of the packets frequency.
Then we present an overview of the machine learning algorithms used in our analysis. After that we
will see the various datasets employed coming from different sources. We then present our results.
For the first set of attributes regarding the packets statistics, we mainly employ two methods for the
classification: a clustering approach, which learns directly from the structure of the dataset; and a
classification tree, trained with the collected data and evaluated using 10-fold cross validation. The
results show that classification tree outperform clustering on all datasets, and achieve high accuracy
on both homogeneous simulated and real deployment traffic data. For the second set of attributes
regarding the packets frequency, we show different techniques used to collect the temporal series and
show that most of them doesn’t performs well for the classification. We will look also into different
preliminary experiments and their results. Finally we show with more focus the method that achieve
the best result. We construct the time series using the packets length. For the classification we use an
ensemble learning algorithm that uses a Random Forest classifier. We train the trees with the entire
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frequency spectrum, given by the outcome of the Fast Fourier transform. The evaluation is performed
using both 10-fold cross validation and a split between training, validation and test-set. The latter
is used for hyperparameter tuning. The results show that for reasonably large datasets the classifier
achieves very high accuracy, as well as Precision and Recall rates.
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1 Introduction
Progress in wireless network connectivity, miniaturization, and computing resources with advanced
learning capabilities have seen the proliferation in the last decade of ubiquitous, independent and
mostly autonomous devices dedicated to new and diverse applications, including sensing, remote
control, fleet tracking, and environmental monitoring and conditioning. Network operators and com-
ponent manufacturers must support this array of applications by providing network management
functions such as resource planning, quality of service (QoS) provisioning, load balancing and law-
ful intrusion detection. At the same time, the diversity of IoT devices and applications results in
infrastructure requirements that are vastly heterogeneous, posing significant challenges in delivering
an optimized set of differentiated services. IoT traffic could be very diverse in terms of network pa-
rameters and bandwidth requirements, reaching the very extremes of the available range. On one
side, some devices may be monitoring quantities that change infrequently, such as a power meter or
a temperature sensor. These devices would therefore connect to the network from time to time, and
exchange minimal amount of data. The access pattern may be periodic, such as the power meter,
or sporadic, triggered by the data itself, when the system is interested in detecting certain events.
Latency in these cases is often of little concern, as long as it is reasonable. However, more and more
often, a guaranteed connection may be required in order to quickly trigger an alarm, such as the detec-
tion of hazardous events. On the other side of the spectrum, data may be streamed in large amounts,
for instance by surveillance cameras or by telemetry systems on vehicles. One additional aspect is the
rapidly increasing and large number of devices which may require the connection. Considering that
communication between things may be less tolerant to latency, errors and failures than a correspond-
ing human communication, and together with the needed service guarantees, which are not currently
sufficiently supported by the network providers, service providers could be prompted to shift their
communication products which need to evolve from a simple, undifferentiated dumb pipe to a more
dedicated, performance aware network [30]. Traffic classification is therefore an essential feature to
retrofit existing networks with devices that can support extra and smart functionalities. In addition,
the value created by things is not limited to their specific functionality, but is more concentrated on
the information that they produce. This information often acquires meaning when aggregated with the
data produced by a multitude of devices. For these reasons, information processing does not generally
occur on the individual devices, but is rather delegated to geographically distributed servers, known
as cloud services, whether or not the device is technically able to handle the data. Communication
is therefore not just limited to data which gets collected in a central repository, but is instead a key
part of the functionality of a large integrated and distributed system. A network that is aware of the
services can therefore take decisions that can help optimize the overall performance.

Detecting and classifying traffic can be accomplished using several techniques. Deep packet inspec-
tion (DPI) consists in observing the contents of the individual packets in order to detect characteristic
patterns that identify the kind of protocol in use [24, 54]. The simplest methods work at the network
level (TCP or UDP) and consider IP addresses and port numbers, which in most cases are individ-
ually assigned to particular services. More complete methods analyze also the higher levels of the
protocol, up to the application layer, to avoid problems with port spoofing and to provide a more
general approach. From the protocol, one can then deduce the class of service that is being used, and
therefore classify the underlying application. An alternative approach is deep flow inspection (DFI),
which considers the overall behavior of the flow of packets, by analyzing, for instance, the size of the
packets, their inter-arrival times, and other statistics. Deep flow inspection typically uses statistical
classification and machine learning to provide a result. Because of the working principle of DFI, this
method is also known as behavioral classification. Behavioral classification is based on features of
flows, rather than of individual packets, and uses statistical or behavioral classifiers to determine the
application or protocol in use. Statistical and behavioral classifiers work at slightly different levels
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of abstraction, the first looking at features of the packets, the latter focusing more on the flow as a
whole, looking at the access patterns. Their advantages are similar. The benefits of statistical and
behavioral classification are twofold. First, behavioral classification can be applied whenever packets
cannot be inspected, either because of the use of encryption or for privacy restrictions. In the second
place, behavioral classification may provide results also when applications use standard application
level protocols, such as HTTP, to exchange information. Valenti et al [46] provide a comprehensive
review of statistical and behavioral methods, discuss the operation of support vector machines and
decision trees, and analyze in detail both Kiss, a statistical classifier [10], and the Abacus behavioral
classification algorithm [37]. In particular, the statistical classifier looks at the entropy of groups of
four bits in the headers, building a specific signature for each application. Abacus, on the other hand,
looks at the connection activity of the application, considering number of connections, frequency of
connections and stability of the link. For behavioral classification to work efficiently, one has to identify
the most specific characteristics of the flows to be identified, and then employ a correct classification
methods.

1.1 Characteristics of M2M traffic
The first aspect that must be considered when dealing with behavioral classification is an analysis of
the communication pattern of the traffic that we want to classify. Shafiq et al. [33] have conducted a set
of measurements to compare the machine-to-machine (M2M) traffic to traditional cellular smartphone
traffic. The dataset comprises flows exchanged over the cellular data network in the USA. They
report, for instance, that M2M devices have a much larger ratio of uplink to downlink traffic volume,
their traffic typically exhibits different diurnal patterns, they are more likely to generate synchronized
traffic resulting in bursty aggregate traffic volumes, and are less mobile compared to smartphones.
One interesting contribution of this study is the technique used to identify M2M traffic relative to
standard traffic. The authors use the Type Allocation Code, which determines the kind of device
that is generating the traffic. By consulting the GSM allocation database, one can determine whether
the traffic is M2M or rather smartphone based. M2M devices are identified relative to an AT&T
classification, complemented by public information, such as brochures and device specifications. The
authors also divide the M2M devices in 6 categories, e.g., asset tracking metering, tele-health.

• Uplink vs. downlink. The first finding shows that M2M devices have a much larger uplink
volume that downlink volume, in relative terms, compared to smartphones. This suggests a
considerably different use of the network, and shows that M2M devices act more as content
producers than consumers. There are also differences among the different categories of M2M
traffic. At the same time, total M2M traffic, at least at the time of the study, was much lower
that for smartphones. This situation may reverse as the number of M2M devices increases much
more rapidly than smartphones. Network providers will have then to support a large number of
low volume devices.

• Frequency patterns. The analysis also shows that M2M traffic follows business hours, and
is significantly reduced in the weekends, as opposed to smartphone traffic which is virtually
unchanged. Spectral analysis indicates strong periodicity in M2M traffic, corresponding to time
intervals such as 1 hour, 30 minutes or 15 minutes, suggesting the timer-driven nature of M2M
devices. Further analysis also reveals that devices are synchronized and coordinated. This may
create congestion in the infrastructure. This frequency components are essentially absent from
smartphone traffic.

• Sessions. The data shows that M2M devices have a lower active time than smartphone traffic.
The length of a session, on the other hand, critically depends on the category of M2M device,
with smartphone traffic in the middle. Sessions inter-arrival times are, instead, on average much
longer for M2M devices than for smartphone traffic. M2M devices are active for traffic for much
less time than smartphones. M2M traffic sessions occur much less frequently.

• Round Trip Time (RTT) and packet loss. The study looks at the time between the SYNC and
ACK packets when establishing a TCP connection. The data shows that smartphone traffic
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exhibits a lower RTT than M2M traffic. This is likely due to the used technology: smartphones
are typically equipped with the latest network access technology, whereas M2M devices often
still rely on 2G, which has longer delays. Among the M2M devices, telehealth is found to have
the lowest RTT. Similarly, smartphone traffic and telehealth exhibit a lower packet loss rate. In
some cases, packet loss may be due to the poor location of the devices (e.g., inside buildings).

One limitation with behavioral classification is that it generally classifies flows rather than packets. In
this sense, the initial packets of the flow are of unknown nature, since not enough data has been yet
received to obtain a meaningful result from the statistical analysis. This makes these techniques less
useful in the context of a load balancing application. At the same time, port spoofing and encryption
hamper the classification using DPI techniques. For this reason, a combination of DPI and DFI using
statistical methods could provide the best results.

1.2 Overview
In this thesis, we are interested in particular in distinguishing between traditional user traffic, such
as e-mail, web surfing and media streaming, from traffic originating from IoT or other machine to
machine communications. We divided the work in two main analysis:

• Distinguish IoT flows from NON IoT through the analysis of statistical features of the packets.

• Distinguish IoT flows from NON IoT through the analysis of the frequency features of the
packets.

To construct a classification procedure we use machine learning algorithms that can estimate the
parameters for recognition from available labeled data. We therefore need to solve four problems:

• Generate or collect sufficiently comprehensive data for initial training and analysis.

• Develop an appropriate algorithm for classification using the given data.

• Have a good balance of IoT flow compared to NON IoT.

• Choose the best features to construct the temporal series.

In our case, we have used several different techniques for generating flows of packets, from real
IoT deployments to simulated systems, to have variety. In particular, we have seen different types
of platforms, IBM-Bluemix [2], Node-RED [7], Contiki [1], and MIMIC Simulator [5]. Regarding the
flows coming from real environments we will see all the types and the sources [48, 47, 49, 52, 51, 15,
16, 20, 12, 18] of the flow involved in our analysis. For the classification algorithm we have used the
Weka framework [9], which provides the most popular machine learning methods out of the box and
facilitates the interface between the data and the algorithm. In particular, we rely on two types of
decision trees algorithms. The first is random forest algorithm, it has been shown to perform very
well for the classification of the flows through the Fast Fourier Transform [53]. The second one is the
J48 decision tree algorithm, a derivative of C4.5 [25], since it has been shown too, to perform well
for internet flow classification [31]. We also explore clustering methods, using the k-means algorithm,
to determine whether there is intrinsic structure in the data that can set apart the behavior of IoT
devices from traditional communication. Our results show that this is only partly the case, and that
the decision tree can provide better performance when devices of different kinds are employed. For the
first type of analysis, we also evaluate the performance of other learning algorithms, such as neural
networks and support vector machines. Several features, which are collected using libpcap library
and the Tstat flow analysis software [34], are used for the classification. We deliberately ignore the
port information, which could considerably simplify the problem. Instead, we focus more on the
”behavioral” parameters, which are more independent of the protocols and robust to encryption. We

7



analyze two types of behavioral parameters, the packets frequency and the packets structure.

2 IoT Flow Generation tools
As discussed in the introduction, we have used several techniques to generate flows of IoT communica-
tion, including simulations, deployments and collecting data made publicly available on the Internet.
In this section we discuss the different methods for traffic generation.

2.1 IBM-Bluemix - Node Red
IBM Bluemix is a platform that provides a service that makes several functionalities related to IoT
applications available on the cloud [2]. One of the services offered by IBM Bluemix is Watson IoT
Platform, which allows us to create applications, visualize a control dashboard, and simulate data
exchange based on the MQTT protocol [6]. Alongside this, Node-RED is a flow-based programming
tool for the IoT, which allows sensors and actuators to be connected to each other, as well as to APIs
and online services required for their operation. It consists of a graphical platform which provides a
palette of components which simulate the devices, and in which it is possible to connect the required
peripherals. Taken together, Watson IoT Platform and Node-RED make it possible to build a complete
system based on MQTT communication.

The flow editor will then show the system depicted in Figure 2.1.

Figure 2.1: Screenshot of the temperature reading system in Node-RED flow editor.

Figure 2.2 gives a general overview of the relation between the different parts of the system.
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Figure 2.2: Connections around the IBM Watson IoT Platform.

2.2 Contiki
Contiki [1] is an open source, highly portable and light-weight multi-tasking operating system. It is
written in the C language, and is particularly suitable for embedded systems with limited hardware
resources. A typical Contiki configuration comprises 2 kilobytes of RAM and 40 kilobytes for ROM
for the OS, and it was designed especially to extend the traditional Internet paradigm to the Internet
of Things. We have used Contiki to generate CoAP packets. To do this, we will install the Contiki
operating system on a virtual machine, and use the Cooja simulator to instantiate some simple nodes
and have them communicate.

2.3 MIMIC Simulator
MIMIC Simulator [5] is able to create several virtual sensors capable of generating MQTT traffic, to
test a system configuration before deployment. This is a commercial tool, however a trial version is
more readily available. The trial lasts for 30 days, and allows one to simulate up to 25 concurrent
sensors. Subsequently, we requested a more advanced trial, with the ability to simulate 250 sensors
with a 15-day duration. Figure 2.3 shows the simulator main window. To simulate the sensors, click
on “Add” on the main toolbar. A window will open which allows one to select the number of sensors
that must be created in a range (e.g., from 1 to 25). In addition, we must select a valid private IP
address within the subnetwork (e.g., 192.168.1.1/24). Finally, one can select the desired sensor to be
simulated in the device section. From the menu, select Advanced, and in the Protocol section make
sure that the MQTT box is checked. Figures 2.4a and 2.4b show the screenshots related to these
operations.

Having done this, you can go into the newly created MQTT tab. In the first place, one needs
to provide a protocol configuration file for the definition of the payload. There are several default
that are already provided, which can generate various kinds of dynamic payloads. An example of
configuration file is the following:

# Sample MQTT config file

# Copyright (c) 2016 Gambit Communications, Inc.

# this demonstrates dynamic messages generated from the same sensor

message = {

topic = some-topic

# in msec

interval = 5000

# QOS default 0

# qos = 0

9



Figure 2.3: MIMIC main window.

(a) Selection of the IP address. (b) Protocol selection.
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data = {

# payload is dynamically generated:

action = action1.mtcl

}

}

message = {

# dynamically generated topic for each agent of the form

# /sensor/IP-ADDR/topic1 where IP-ADDR is the IP address

# of the agent

topic = action-topic-dynamic.mtcl

interval = 10000

qos = 1

data = {

# payload is dynamically generated:

action = action2.mtcl

}

}

The payload can be generated dynamically, while the time interval can be specified directly, together
with the topic. We used different configuration files, to try to make the network as diverse as possible.
It is possible to choose several brokers to which messages are sent. In the following section we
will discuss the brokers that we have used for our analysis. Figure 2.5 shows a screenshot of the
configuration and broker selection window.

Figure 2.5: Configuration and Broker selection.

2.4 MQTT-Broker
In an MQTT system, the broker is responsible for receiving data from sensors and delivering informa-
tion to the clients that request access. The broker follows a publish and subscribe paradigm, where
sensors publish the information to the broker, which then alerts all the clients which have subscribed
to the corresponding data. In our experiments, we have experimented with several different brokers,
listed in Table 2.1.

In particular, we have used the HiveMQ MQTT broker at http://broker.hivemq.com, which then
redirects to http://www.mqtt-dashboard.com. The advantage of this broker is that it does not limit
the number of connections, as most of the other services do. The mosquitto broker also limits the
number of connections, however it is simple to install a copy on a local personal computer.

2.4.1 Mosquitto

Mosquitto is an open source MQTT broker, and can be installed locally on the PC. Mosquitto is able
to both send messages to another broker on the net, and to receive them. Mosquitto is very simple to
use. In order to get more information, it is useful to change the configuration file so that we log more
of the events. It is useful to try a simple publish and subscribe test, to verify that the installation was

11



Table 2.1: List of MQTT brokers employed in experiments.

Port Address Note

1883 iot.eclipse.org -

1883 test.mosquitto.org -

1883 broker.hivemq.com -

18443 cloudmqtt.com Requires registration, limited number of connections

1883 mqtt.dioty.co Requires registration

1883 mqtt.swifitch.cz -

successful. From two different terminals, we can first subscribe on a topic (for instance we can use
hello/world), and then, from the other terminal, publish some text.

3 Capture and analysis tools
Several tools have been used to capture the raw data, organize it in flows, compute statistics and
generate and evaluate classification algorithms. This section discusses them in turn.

3.1 Libpcap
Libpcap [3] is the library where all the analysis tools used in this work are based. It provides several
API with the aim to capture and analyse the packets. To use libpcap in your program you have to
include <pcap.h> in your code. Once the .pcap file is injected in our program through the function
pcap open offline(”file.pcap”, error buffer), we filter it, using the functions that libpcap provides. To
filter the packets we use the function pcap compile(), it takes in input an expression containing the
filtering instructions, for instance, which types of packet we want discard or maintain. We use this
string to filter the packets ”tcp[tcpflags] & tcp-syn == tcp-syn and tcp[tcpflags] & tcp-ack != tcp-ack”.
This expression allow us to maintain the syn packets, discard all the syn acknowledge packets and
obviously discard all the other types of packets. We apply this kind of filter because we want isolate the
flows, so as to know their IP address. Once we have all the ip address, we filter another time the file.
This time we use this string ”(src port and dst port and src host and dst host) or (src port and dst port
and src host and dst host)”, so we can filter all the packets for each flow. Subsequently we analyze the
entire flow with the function pcap loop() that allow us to scan the packets and collect informations.
Another useful function that libpcap provide us, is, pcap open live(), it allows us to capture packets
from live network. Inside the program we have to define the packet headers, which contains various
informations of the packet layers. We show a public piece of code named ”Sniffex.c” [8] that contains
the Ethernet header, the IP header and the TCP header.

/* Ethernet header */

struct sniff_ethernet {

u_char ether_dhost[ETHER_ADDR_LEN]; /* destination host address */

u_char ether_shost[ETHER_ADDR_LEN]; /* source host address */

u_short ether_type; /* IP? ARP? RARP? etc */

};

/* IP header */

struct sniff_ip {

u_char ip_vhl; /* version << 4 | header length >> 2 */

u_char ip_tos; /* type of service */

u_short ip_len; /* total length */
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u_short ip_id; /* identification */

u_short ip_off; /* fragment offset field */

#define IP_RF 0x8000 /* reserved fragment flag */

#define IP_DF 0x4000 /* dont fragment flag */

#define IP_MF 0x2000 /* more fragments flag */

#define IP_OFFMASK 0x1fff /* mask for fragmenting bits */

u_char ip_ttl; /* time to live */

u_char ip_p; /* protocol */

u_short ip_sum; /* checksum */

struct in_addr ip_src,ip_dst; /* source and dest address */

};

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)

#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */

typedef u_int tcp_seq;

struct sniff_tcp {

u_short th_sport; /* source port */

u_short th_dport; /* destination port */

tcp_seq th_seq; /* sequence number */

tcp_seq th_ack; /* acknowledgement number */

u_char th_offx2; /* data offset, rsvd */

#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)

u_char th_flags;

#define TH_FIN 0x01

#define TH_SYN 0x02

#define TH_RST 0x04

#define TH_PUSH 0x08

#define TH_ACK 0x10

#define TH_URG 0x20

#define TH_ECE 0x40

#define TH_CWR 0x80

#define TH_FLAGS (TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)

u_short th_win; /* window */

u_short th_sum; /* checksum */

u_short th_urp; /* urgent pointer */

};

This piece of code contains all the informations provided by the ISO/OSI model. Regarding the
datalink layer we have three fields, respectively, the source MAC address, the destination MAC address
and the type of packet protocol. About the Network layer, we find, the destination and the source IP
address, the total length of the packet, the type of protocol, the checksum and various flags. Finally
we have the TCP header, we find the ports, the number of acknowledge and different types of flags.
To this piece of code we added our code to compute di analysis to extract the flows. Here we can see
the main function and how it works.

int main(int argc, char *argv[]) {

a = fopen ("flussi.csv","w");

char *device; /* Name of device (e.g. eth0, wlan0) */

char error_buffer[PCAP_ERRBUF_SIZE];

pcap_t *handle = pcap_open_offline(argv[1], error_buffer);

u_char *my_arguments = NULL;

struct bpf_program fp; /* The compiled filter expression */
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char filter_exp[] = "tcp[tcpflags] & tcp-syn ==

tcp-syn and tcp[tcpflags] & tcp-ack != tcp-ack"; /* The filter expression */

bpf_u_int32 net; /* The IP of our sniffing device */

const u_char *packet; /* The actual packet */

struct pcap_pkthdr header; /* The header that pcap gives us */

if (pcap_compile(handle, &fp, filter_exp, 0, net) == -1) {

fprintf(stderr, "Couldn’t parse filter %s: %s\n",

filter_exp, pcap_geterr(handle));

return(2);

}

if (pcap_setfilter(handle, &fp) == -1) {

fprintf(stderr, "Couldn’t install filter %s: %s\n",

filter_exp, pcap_geterr(handle));

return(2);

}

pcap_loop(handle, -1, got_packet, my_arguments);

First we take the .pcap file as input, then we filter it with the function pcap compile and then we
call pcap loop to scan the filtered file. As described previously the string ”tcp[tcpflags] & tcp-syn ==
tcp-syn and tcp[tcpflags] & tcp-ack != tcp-ack” allow us to to maintain all the syn packets in such a
way to detect and isolate the flows. After that we save the source and destination IP address and the
respectively ports. After this preliminary scan phase, we provide to scan each flow, in order to save
the payloads and the inter-arrival time to compute the Fast Fourier transform.

for(i = 0; i < number_of_flows; i++) {

pcap_loop(handle, -1, got_packet, my_arguments);

}

//function called by pcap_loop

void got_packet(u_char *args, const struct

pcap_pkthdr *header, const u_char *packet){

if ( block != 0 && restart == 1 &&

tcp->th_flags != 2 ) {

int re = strcmp(save_ip[0],inet_ntoa(ip->ip_src))

if ( re == 0 ) {

long prima = NapTime;

long prima_sec = NapTime_sec;

NapTime = (header->ts.tv_usec);

NapTime_sec = (header->ts.tv_sec);

if (packet_counter == 0) {

flow_sequence[packet_counter] = size_payload;

flow_sequence_TIME[packet_counter] = 0 ;

} else {

long seconds = NapTime_sec - prima_sec;

long micro_seconds = NapTime - prima;

if ( micro_seconds < 0 ) { seconds -= 1;}
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long total_micro_seconds = (seconds *

1000000) + abs(micro_seconds);

flow_sequence_TIME[packet_counter] =

total_micro_seconds;

flow_sequence[packet_counter] =

size_payload ;

}

packet_counter++;

} else {

if(packet_counter_inv < 256) {

flow_sequence_INVERSE[packet_counter] =

size_payload;

packet_counter_inv++;

}

}

if ( ( tcp->th_flags == 17 ) ||

( packet_counter == 256 ) ||

( ( packet_counter_inv == 256 ) &&

( packet_counter > 128 ) ) ) {

//Compute FFT

}

}

First of all, iteratively we scan each flow calling the function got packet invocated by pcap loop.
Inside the function got packet we made our analysis, initially we save the source MAC address, it is
used to recognize and to label each device. Then we save in three arrays the payloads of the packets,
respectively from client to server, from server to client and the inter-arrival times from client to server.
Finally, we have the block of conditions, inside them we compute the FFT from the series. We stop
the scan of the packets, when we see a FIN packet, this means that the flow is finished, or when we
see 256 packets from client to server or when we have 256 packets from server to client and 128 from
client to server. If one of this three condition is verified, we save the frequency spectrum, we label the
flow and we save it in a csv file.

3.2 Sniffer: Wireshark and tcpdump
To capture the packets generated with the above methods we need special software that can monitor
the activity on the network interfaces and record all the packets that are transmitted and received.
We can do this using the Wireshark sniffing software, which is free, easy to use, well documented and
actively maintained. Wireshark provides a graphical user interface with which to observe the network
traffic, select the desired network interface, and capture the packets in real time. The software presents
both the raw data in the form of a hexadecimal dump, as well as the dissected information regarding
the various levels of the protocols that are used in the communication, including the source and
destination IP addresses and ports. In particular, Wireshark understands most of the IoT related
protocols. Once the data is captured, it can be exported to files that can be used for off-line analysis,
whether it is deep packet inspection or flow inspection. Several file formats are supported (e.g., pcap,
pcapng, csv, raw). Integrated filters can be used to select exactly the kinds of packets that need to be
exported, discriminating on the protocols, the addresses, and so on. In figure 3.1 we illustrate how a
packet is visualized in wireshark. Besides Wireshark, we have also used tcpdump, a more lightweight
sniffer without a graphical user interface. The software is actually rather powerful, and implements a
set of filters to select the packets or hosts on which to intercept the traffic. Running from the command
line makes it extremely useful in scripting applications. In addition, the file formats are compatible
with Wireshark.
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Figure 3.1: Wireshark Screenshot

3.3 Tstat
Tstat is a tool that is able to analyze network traffic and provide useful information on the perfor-
mance indexes and give statistical information on the communication parameters. Tstat can generate
statistics in two ways: by capturing packets directly from the network interface (using the same li-
braries as tcpdump), or analyzing packet traffic traces that were previously captured and saved on a
file. Tstat supports several formats, and is compatible with the traffic capture software described in
the previous section.

We use Tstat primarily to analyze previously captured data, we will therefore invoke the software
using the following command:

tstat -g -H histogram.txt dump_file

where -g instructs the software to generate global statistical information (see below), and -H histogra

m.txt determines which statistics to collect. We are generally interested in all the available data, so
that histogram.txt contains the simple line

include ALL

Tstat generates two kinds of output. The first is a set of log files which contain information about
the connections that were detected during the communication. Tstat understands the concept of
“flow”, i.e., a series of packet exchanges related to the same communication, identified by source and
destination IP addresses and ports, and combines the data from different packets that belong to the
same flow. When using the TCP transport protocol, a flow is identified from the moment it is opened
using the SYN - SYN/ACK sequence, to the moment it is closed using FIN/ACK or RST sequence.
A flow is also closed whenever no packet is observed related to the flow for a default duration of 10
seconds, or if more than 5 minutes have elapsed from the last packet in general.

More in detail, the log files which are generated as part of the analysis are the following:

• “log tcp complete” and “log tcp nocomplete”: in these two files all the information related to
TCP flows is recorded. The “complete” log file contains information on all the correctly identified
TCP flows, while the “nocomplete” log file lists information on those flows which have not been
correctly identified. This may happen, for instance, if the packet capture was started after the
connection was already established, or before it is closed.

• “log udp complete”: similarly to TCP, this file reports information on the UDP flows. A UDP
flow is identified whenever the first segment of the protocol is observed for a pair of UDP ports
and IP addresses, and terminates when no packets are observed for 10 seconds from the beginning
of the connection, or after 3 minutes and 20 seconds have elapsed from the last packet in general.
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• “log video complete”: this file tracks all the video TCP flows. The connections are subdivided
into RTMP and TLS, which are associated for instance to youtube, and HTTP connections.

• “log http complete”: this log file tracks information related to all the HTTP requests and re-
sponses. This file is not generated by default, but must be requested when the software is
invoked.

• “log mm complete”: reports statistics on multimedia flows, such as RTP and RTCP flows.

• “log skype complete”: reports statistics related to Skype traffic.

• “log chat complete, log chat messages”: reports statistics related to messaging applications and
chats in general.

Within each log file we find the values related to the corresponding kind of communication. The file
is organized in columns, which are grouped according to the direction of traffic, from client to server
or from server to client. The reported information is very comprehensive, and is shown on Figure 3.2,
taken from the Tstat documentation. In the first place, we find the IP addresses of the client and

Figure 3.2: Data reported in the TCP log file.

the server, the ports that are used, the total number of packets, and the number of RTS and ACK
segments that were sent. We then have information about the size of the transmission, with the
total bytes and number of packets that were exchanged. Finally there is timing information, giving a
measure of the overall flow duration and for certain specific packets.

An additional functionality is the ability to generate histograms related to the captured data. A
histogram represents the distribution of a specific performance index, considering a fixed measurement
period. For this functionality, Tstat saves numerous files corresponding to the statistics of the flows
observed over intervals of 5 minutes. Traffic is again subdivided according to its direction, as before.
Several parameters can be analyzed:

• IP Layer: statistics related to the IP addresses and the protocols that were used.

• TCP Segments: statistics related to the TCP segments.
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• TCP Flows: statistics related to the TCP flows.

• UDP Layer: statistics related to the UDP flows.

• Streaming Flows: statistics related to flows that carry streaming data.

• RTCP Flows: statistics related to the RTCP protocol.

• HTTP Flows: statistics related to the HTTP protocol.

• Profile: profile of the computer on which Tstat is executing.

3.4 Weka
Weka is a Java-based analysis software which collects a large number of machine learning algorithms
and analysis methods to be applied to sets of data. Weka provides a generic interface with which
to solve classification problems, regressions, clustering, association rule extraction and is capable of
generating diagrams and plots. In addition to the graphical user interface, Weka can also be used
directly through the Java language. One way to use Weka is to apply the machine learning algorithms
to the dataset for analyze the data in more detail, or to use models to predict the results.

Running Weka is particularly simple, once the installation files have been downloaded. Simply go
into the download directory, and run

java -jar weka.jar

The simplest method to use Weka is through its own graphical user interface, called “Explorer”, which
can be selected from the Applications menu. In the Explorer, one can select among six different panels.
In the first, Preprocess, it is possible to select and load a dataset, which is a text file in the Attribute
Relationship File Format (“arff”). The arff file is made of two sections: the header and the actual
data. In the first line of the header we find the name of the relation, followed by a list of attributes,
which represent the kind of data found for each record, with their names and type. There can be
several types of attributes:

• Numeric: it is a numeric type represented by a floating point value.

• Nominal: it is an enumerated type, with a predefined number of values.

• String: a string, typically used in text classification.

• Date: represents a data, entirely described in floating point.

• Relational: it is a kind of attribute that may contain other attributes.

Finally, the header contains the classes to which the records which are listed in the subsequent section
belong. This is typically a nominal type, i.e., an enumerated list of possible alternatives. This is a key
parameter in classification, since it provides the resolution by which the algorithms operate. After the
header, the file contains the data, described sequentially. Each attribute is separated from the next
by a comma, and the record is terminated by its class. A simplified example of arff file that we have
used in our tests is the following:

@relation ’cccc-weka.filters’ @attribute c_pkts_all:3

numeric @attribute c_bytes_all:9 numeric @attribute

s_pkts_all:17 numeric @attribute s_bytes_all:23 numeric

@attribute durat:31 numeric @attribute

inter-arrival-time numeric @attribute c_rtt_avg:45

numeric @attribute c_rtt_min:46 numeric @attribute

Protocol {TCP,VPN,MQTT,CASA} @data

5,572,5,296,607.911,60.7911,0.269658,0.198,TCP

5,354,5,1193,282.466,28.2466,1.622613,0.324,VPN

5,490,5,296,602.203,60.2203,0.31199,0.219,TCP

5,354,5,1193,333.994,33.3994,0.31199,0.239,MQTT
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5,612,5,296,578.331,57.8331,0.272991,0.215,TCP

5,572,5,296,644.661,64.4661,0.615646,0.189,TCP

5,354,5,1193,300.728,30.0728,0.254658,0.148,TCP

5,599,5,296,586.181,58.6181,0.253325,0.211,CASA

5,354,5,1193,325.747,32.5747,0.278991,0.182,TCP

As shown, the data is listed in order for each record and correspond to the attributes in the header,
terminated by the Protocol class. Once the file is loaded, Weka creates a histogram which graphically
shows the distribution of the attributes and their class. More in detail, the histogram shows the
number of times that an element of a certain class (classes are color coded) has an attribute in a
certain range. This could be useful to visually determine if an attribute is able to discriminate among
the various classes. Figure 3.3 shows the main Weka window for the complete file.

Figure 3.3: Weka Explorer window, showing attributes and classes.

It is also possible to filter the data for use with different kind of learning algorithms, such as
supervised and non-supervised. There are several filters. For instance, one can normalize the data or
discretize them by dividing them into bins of defined size.

Weka provides several learning algorithms, which can be selected in the “Classify” tab. Among
them:

• Various instances of Bayesian classifiers;

• Functions, including linear regression and logistic regression, as well as neural networks (multi-
layer perceptron) and support vector machines;

• Rules, such as the basic ZeroR, OneR, and algorithms such as DecisionTable, JRip, and PART;

• Trees, such as HoeffdingTree and J48;

Once the algorithm has been chosen, we can select whether the previously loaded dataset should be
used entirely as a training set, or if we want to split it into folds, or again if we want to use only a
fraction of it. The training set is that part of the data which is used for learning, while the validation
set is the part used to validate and test the model that is created by the learning algorithm.
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Once the test options have been selected, we can execute the learning algorithm by clicking on
Start, which will train the classifier. For our example, we have used the J48 decision tree algorithm.
The output is structured as follows: first we find the list of attributes, and how these have been
used in the tree; then we find the actual tree, showing which parameters have been used as path
discriminators, and their value; finally, the system provides a summary that shows the statistics
regarding the performance of the classification algorithm. For our example (using the non-simplified
version):

Correctly Classified Instances

12048 96.1379 % Incorrectly Classified Instances 484

3.8621 % Kappa statistic 0.9608 Mean absolute error

0.0012 Root mean squared error 0.0248 Relative absolute error

6.2703 % Root relative squared error 25.0411 % Total Number of

Instances 12532

In the first place, we find the number of records that were correctly classified, and those that we
incorrectly classified, with their corresponding percentage. More statistics include the degree of accu-
racy and reliability, error information such as the root mean squared error and relative absolute error,
and the total number of instances (records) that were analyzed. The output is then integrated with
more accuracy details regarding the various classes. It consists of 9 columns and as many rows as the
number of classes. For our example, we obtain:

TP Rate FP Rate Precision Recall

F-Measure 0,950 0,000 0,938 0,950 0,944 0,942 0,000

0,970 0,942 0,956 0,982 0,001 0,974 0,982 0,978

0,966 0,001 0,957 0,966 0,961

MCC ROC Area PRC Area Class 0,944 1,000 0,981 cluster0 0,955

1,000 0,981 cluster1 0,978 1,000 0,996 cluster2 0,961

1,000 0,986 cluster3

Le columns report, in order, the rate of True Positives (TP), of False Positives (FP), the precision, the
recall and the F-Measure which combines the previous metrics. In addition, it reports the Matthews
Correlation Coefficient (MCC), the Receiver Operatin Characteristic (ROC), the PRC and finally
the class. Finally, the results include the confusion matrix : each column represents the predicted
values, while the rows represent the real values, for each class. Non-zero elements outside the diagonal
correspond to classification errors. An example is shown in Figure 3.4. The matrix gives an indication

Figure 3.4: Confusion matrix for our example.

of how well elements are classified, and how the error is distributed across the various classes.
Another important section in the Weka tool is dedicated to clustering. In this case, the input is

analyzed and records are divided in clusters according to their attributes. From the interface, one can
select several clustering algorithms, including Canopy, Cobweb, EM, FarthestFirst, FilteredClustered,
HiearchicalClusterer, MakeDensityBasedClusterer and SimpleKMeans. Also in the case of clustering,
the dataset can be split between training and test data, according to a specific percentage. In our
case, we have used the SimpleKMeans algorithm. The generated output includes a table which reports
the centroid used for each cluster, and a second table that reports how many records (flows in our
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case) have been assigned to a cluster rather than another. It is also possible to graphically visualize
the cluster assignment and their distribution. The results can be exported, in a way that the clusters
take up the function of a class.

3.5 KissFFT
To compute the Fast Fourier Transform (FFT) we used a specific library called, ”KissFFT”[4]. It
provides several functions to compute the fast fourier transform. Let we see a piece of code

#include "kiss_fft.h"

kiss_fft_cfg cfg = kiss_fft_alloc( nfft ,is_inverse_fft ,0,0 );

while ...

... // put kth sample in cx_in[k].r and cx_in[k].i

kiss_fft( cfg , cx_in , cx_out );

... // transformed. DC is in cx_out[0].r and cx_out[0].i

kiss_fft_free(cfg);

To use this library in our program we have to include the file ”kiss fft.h” in our code. The function
kiss fft() takes in input the FFT allocation parameters (it specifies the number of the fft points), the
input series ”cx in”, and the output ”cx out”. To have the amplitude of the signal we have to compute
the square root of sum of square of the real and the imaginary part.

for(i = 0; i < N / 2 + 1; i++) {

mags[i] = hypotf(out[i].r,out[i].i);

}
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4 Datasets
In this work, for both of our experiments we used a variety of public repository to obtain the pcap
files, and from them then construct our datasets.

4.1 Pcap Resources
Most of pcap files used for the analysis comes from a public repository provided by University of New
South Wales (UNSW Sydney), Australia [48, 49, 47].

They developed a small smart IoT environment with different types of devices, IoT and non IoT,
interconnected through a wireless network. From this resource we take 2 types of flows, the IoT flows
from this devices:

Table 4.1: Australian IoT devices

IoT Device MAC address

Smart Things d0:52:a8:00:67:5e
Amazon Echo 44:65:0d:56:cc:d3
Netatmo Welcome 70:ee:50:18:34:43
TP-Link Day Night Cloud camera f4:f2:6d:93:51:f1
Samsung SmartCam 00:16:6c:ab:6b:88
Dropcam 30:8c:fb:2f:e4:b2
Insteon Camera 00:62:6e:51:27:2e
Insteon Camera e8:ab:fa:19:de:4f
Withings Smart Baby Monitor 00:24:e4:11:18:a8
Belkin Wemo switch ec:1a:59:79:f4:89
TP-Link Smart plug 50:c7:bf:00:56:39
iHome 74:c6:3b:29:d7:1d
Belkin wemo motion sensor ec:1a:59:83:28:11
NEST Protect smoke alarm 18:b4:30:25:be:e4
Netatmo weather station 70:ee:50:03:b8:ac
Withings Smart scale 00:24:e4:1b:6f:96
Withings Aura smart sleep sensor 00:24:e4:20:28:c6
Light Bulbs LiFX Smart Bulb d0:73:d5:01:83:08
Triby Speaker 18:b7:9e:02:20:44
PIX-STAR Photo-frame e0:76:d0:33:bb:85
HP Printer 70:5a:0f:e4:9b:c0
Nest Dropcam 30:8c:fb:b6:ea:45

and the NON IoT flows from this devices (see table 4.2).
To have a variety, we introduced simulated flows generated by a software simulator, MIMIC MQTT

simulator [5]. This software allows to simulate up to 250 concurrent sensors, divided in two main
brands and configurations, Intel and Bosch. In our analisys the two types of sensors are put togheder
in one class, defined ”MIMIC”. Using different configuration files, one can try to make the network
as diverse as possible, simulating different sensors and periodicities. Nevertheless, the behaviors will
be somewhat homogeneous, as it is difficult to model event-triggered sensors in this framework.
To have more IoT resources we introduced more Pcap files provided by the USC/LANDER project [52,
51]. These pcap files contains first-time boot-up traffic of multiple IoT devices located in a LAN
network. Traces are captured at LAN port of the LAN router.
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Table 4.2: Australian Non-IoT devices

NON IoT Devices MAC address

Android Phone 40:f3:08:ff:1e:da
Laptop 74:2f:68:81:69:42
MacBook ac:bc:32:d4:6f:2f
Android Phone b4:ce:f6:a7:a3:c2
IPhone d0:a6:37:df:a1:e1
MacBook/Iphone f4:5c:89:93:cc:85
Samsung Galaxy Tab 08:21:ef:3b:fc:e3

Let we see the devices in this table (see table 4.3).

Table 4.3: Californian IoT devices

IoT Devices MAC Address

HP Printer 34:64:a9:8d:56:cb
TP-Link Smart plug 50:c7:bf:09:08:44
Amazon Dash Bounty Button 50:f5:da:3d:fd:43
Foscam IP CAM2 0c:84:dc:62:6d:5f
Amazon Echo 68:37:e9:b3:ad:b1
Google Smart Speaker 30:fd:38:04:25:32
Amazon Fire SmartTVStick 18:74:2e:e3:4e:22
Philips-Hue 00:01:5c:69:82:47
AMCREST IP CAM 3c:ef:8c:8c:0d:c1
RENPHO Humidifier dc:4f:22:0f:f1:b3
Belkin Wemo switch 60:38:e0:f0:cb:61
TENVIS IP cam 14:6b:9c:a6:b2:7c
D-link IP CAM b0:c5:54:22:b3:ba
TP-Link SmartLightBulb 50:c7:bf:5f:02:b1
Foscam IP CAM a0:c9:a0:f8:65:49
Wize IP CAM 2c:aa:8e:02:ee:ba

Now we introduce different pcap files containing NON IoT flows. The first comes from an ex-
periment from the University of New Brunswick [20]. They captured different real traffic from many
types of services. They collect packets from web browsing, emails, chatting sessions, video streaming
like youtube or netflix, file transfering, voip and p2p services. These flows are very usefull because
rapresents the most of traffic we generate everyday. In table 4.4 we see the different types services
they have collected.

Table 4.4: Canadian NON IoT flows

NON IoT Services NON IoT Services

Facebook Youtube
Email Vimeo
Torrent Spotify
File Transfer Protocol Skype
Gmail Scp
Hangouts Netflix

Then we introduced other flows coming from a repository collected by the Network Monitoring
and Measurements research group at the University of Napoli [15, 16]. They collected traffic on port
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80 generated by clients inside the network of University of Napoli, reaching the outside world. We also
include the ”bigFlows” traffic dataset from Appneta Tcpreplay [12]. This is a capture of real network
traffic on a busy private network’s access point to the Internet. Finally we obtained from an online
repository in Japan [18] other NON IoT flows dedicated to traffic anomaly detection.

5 Packet Statistical Analysis
This chapter takes inspiration of our publication [19]. For this first part of our analysis investigating on
the fractions of the packets length we have followed two methodologies to develop a flow classification
method. The first is based on clustering, while the second is based on general purpose classification
algorithms, with particular focus to classification trees. We first present the dataset previously dis-
cussed in Chapter 4 used for this section of our experiments. Then we discuss the two approaches in
detail.

5.1 Dataset preparation and Baseline classification
The dataset is shared between both classification methods. It consists of information collected using
Tstat on approximately 77 thousand flows, which were later in the project complemented by an
additional 15 thousand IoT flows collected from an online repository. The vast majority of IoT flows
of the initial dataset are obtained by capturing the simulated IoT systems using the MIMIC software
simulator. We have employed different configurations for the virtual sensors, in order to have some
variability in both the communication interval and the size of the payload. Nonetheless, the generated
traffic is rather homogeneous, as the classification results will show it. At the same time, we subscribe
to the published data, so that the broker sends packets to the subscribers as soon as the data is
published. All this traffic is classified as IoT. Additional IoT flows in the initial dataset were captured
from a real IoT deployment in a city-wide environment in Trento, in collaboration with Create-Net.
The system is composed of number of sensors deployed city-wide and a collection point over a LoRa
protocol which then sends data to a server, which can be queried using MQTT. A few more flows
are obtained directly using the methods discussed above. The IoT flows in this first set are, in total,
7,762.

Most of the non-IoT flows (around 54,000) are obtained from an online repository in Japan [18],
dedicated to traffic anomaly detection. To complement these, roughly 3,000 non-IoT flows were
captured in the domestic environment while running the MIMIC simulator, having extra applications
run regular communication patterns, and from the Create-Net deployment, for roughly 12,500 flows,
setting aside the IoT packets. The flows were manually labeled, as shown in Table 5.1.

Table 5.1: Flow manual categorization.

Class Flows Austr. flows Total

IoT 7,762 15,081 22,843
NON IoT 69,357 – 69,357

Total 77,119 22,843 92,200

A second set of 15,081 IoT flows was obtained from an online repository. Traffic is captured in
a domestic environment from a real deployment in Australia, where a house was instrumented with
several devices interconnected through a wireless network [49, 48, 47]. These flows are particularly
relevant, since the range of devices is very diverse (see Table 5.2), and they come from a real deploy-
ment. These have been used in a second step, since they were not available earlier. For this reason, we
first report the results obtained with the initial dataset, and then analyze how these change with the
addition of more IoT flows. This also highlights the difference in clustering and classification accuracy
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Table 5.2: Devices in the online Australian deployment.

Smart device Smart device

Amazon Echo Netatmo Welcome
TP-Link Day Night Cloud camera Samsung SmartCam
Dropcam Insteon Camera
Withings Smart Baby Monitor Belkin Wemo switch
TP-Link Smart plug iHome
Belkin wemo motion sensor NEST Protect smoke alarm
Netatmo weather station Withings Smart scale
Blipcare Blood Pressure meter Withings Aura smart sleep sensor
Light Bulbs LiFX Smart Bulb Triby Speaker
PIX-STAR Photo-frame HP Printer
Nest Dropcam

between a simulated and a real environment.
Once the flows have been captured, the statistics are collected using Tstat to generate the log

files. For this application, we use only the overall information, and do not make use of the generated
histograms. The log files must be pre-processed in order to be used with Weka. In particular, we must
transform them into a “comma separated values” (.csv) format. For our application, we have then
used a spread-sheet to compute additional parameters. For instance, we have computed the average
inter-arrival time as the ratio between the number of packets and the flow duration. This information
was then saved and added to the .csv file. The dataset can now be imported in Weka. In Weka, we
can inspect the statistics file using the ArffViewer, which can be invoked from the main window under
the Tools menu. We can then load the .csv that we have just created, and modify it to remove for
instance attributes and/or flows that we do not intend to use during the classification. The file can
then directly be saved in the .arff format from within the ArffViewer. The data is now usable by
Weka.

Before exploring the classification methods, we report the baseline results that can be obtained
using an extremely näıve approach which classifies all flows according to the most abundant class.
This classification method is known as ZeroR. In our initial dataset (not including the flows from
the Australia deployment), there are many more NON IoT than IoT flows, so if we were to classify
everything as NON IoT, using our entire dataset for testing, we achieve a classification accuracy of:

A =
NON IoT flows

Total flows
=

69357

77119
= 89.9%

A similar reasoning is applied to the complete dataset, which includes the flows from the Australian
deployment, to obtain:

A =
NON IoT flows

Total flows
=

69357

92200
= 75.2%

Because this accuracy is already rather high, we must be careful to consider different metrics to
evaluate our classification strategies, and consider especially the accuracy with which IoT flows are
classified. Besides the class specific True Positive (TP) and False Positive (FP) rate, and the precision
and recall, one alternative measure, which is particularly significant for binary classification especially
when the classes are of different size as in our case, is the Matthews correlation coefficient (MCC).
The MCC returns a value between -1 and +1, where +1 represents a perfect prediction, 0 is no better
than a random prediction and -1 indicates total disagreement between prediction and observation.
For the initial simulated dataset, by applying the ZeroR classification method in Weka we obtain the
performance parameters reported below:

=== ZeroR Summary ===

Correctly Classified Instances 69357 89.935 %
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Incorrectly Classified Instances 7762 10.065 %

Kappa statistic 0

Mean absolute error 0.181

Root mean squared error 0.3009

Relative absolute error 100 %

Root relative squared error 100 %

Total Number of Instances 77119

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.101 IoT

1.000 1.000 0.899 1.000 0.947 0.000 0.500 0.899 NON_IoT

0.899 0.899 0.809 0.899 0.852 0.000 0.500 0.819 Weighted Avg.

=== Confusion Matrix ===

a b <-- classified as

0 7762 | a = IoT

0 69357 | b = NON_IoT

The report naturally shows that the precision for IoT flows is zero (the result is similar for the
complete dataset). Similarly, the MCC is zero, indicating that the method performs in a limit case.
The objective of our study is to maximize these values.

5.1.1 Attribute selection

The flow analysis with Tstat provides a large number of features, all of which are not necessarily
relevant to our objectives. First, our aim is to be able to operate in the presence of encryption. For
this reason, we assume that certain parameters, such as the IP addresses and the port numbers, are
not visible to the application. This may happen, for instance, if the flows are carried along a VPN. It
has been shown that these features are of extreme help in classification [49]. Thus, we set ourselves in
a rather unfavorable situation, and avoid using this kind of information. Secondly, several features are
hard to use in classification, because their values are not specific to any of the classes that we want
to recognize. Their contribution to accuracy is therefore unclear, while they certainly add overhead
to the recognition problem.

For the selection, we have used information from the literature, in particular from a recent study
on the behavior of Machine-to-Machine (M2M) communication [43]. This was complemented by our
own observation of the IoT flows. For instance, we notice that unlike traditional domestic traffic, the
IoT flows tend to have a larger portion of upload packets, with a corresponding large proportion of
ACK packets in the downlink. Therefore, the proportions of uplink and downlink packets could be
considered as good proxies for our classification. Some of these attributes are not directly generated
by the Tstat default distribution. The software was therefore modified to compute the following
parameters:

• rate ack c/s = the number of ACK packets from server or client divided by the total number
of packets from server or client. Measures the proportion of data versus the acknowledge of the
data.

• rate pkt c/s = number of packets from server or client divided by the total number of packets.
Measures the overall fraction of uplink and downlink traffic, over the total traffic.

• rate bytes c/s = number of bytes from server or client, divided by the total number of bytes.
Similar to the previous, counts the bytes instead of the packets.

In addition to these, we have recently added the computation of the average inter arrival time, as
the total flow duration divided by the total number of packets, and its standard deviation. These
parameters have not yet been used for classification, and are part of our future work. Finally, because
our captures do not always include the beginning of flows, we have modified the software to generate
round trip time also for the incomplete flows.

The final attributes contained in the .arff file are therefore the following:

@attribute rate_ack_c:15 numeric
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@attribute rate_bytes_c:16 numeric

@attribute rate_pkt_c:17 numeric

@attribute rate_ack_s:32 numeric

@attribute rate_bytes_s:33 numeric

@attribute rate_pkt_s:34 numeric

@attribute c_rtt_avg:51 numeric

@attribute c_rtt_min:52 numeric

@attribute c_rtt_max:53 numeric

@attribute c_rtt_std:54 numeric

@attribute s_rtt_avg:58 numeric

@attribute s_rtt_min:59 numeric

@attribute s_rtt_max:60 numeric

@attribute s_rtt_std:61 numeric

@attribute Protocol {IoT,NON_IoT}

Next, we will look at the classification methods employed and presents the results.

5.2 Clustering
The first method that we have used for classification is a semi-supervised clustering approach, based
on the SeLeCT self learning classifier proposed by Grimaudo et al. [22]. We use a simpler procedure
whereby we explore the optimal number of clusters required for a correct classification, focusing
especially on the classification of the IoT flows.

We proceed as follows. Under the “Cluster” tab in Weka, we select the SimpleKMeans clustering
algorithm. Using the defaults, we instruct the algorithm to ignore the IoT/NON IoT label given to
each flow, making the approach unsupervised. In other words, the algorithm will try to determine
classes irrespective of the label that was assigned in the first place. Clustering is then run several
times, progressively increasing the number of clusters. Ideally, two clusters would be sufficient, but
naturally the unsupervised method is unable to aggregate IoT and non-IoT flows so that they are
completely separated. With several clusters, instead, we might find smaller aggregates which are
mostly IoT or mostly non-IoT. To make the determination for each cluster, in the Cluster mode in
Weka we select the “Classes to clusters evaluation” option, using the IoT/NON IoT label, so that
each cluster is denoted with the number of actual IoT and NON IoT flows that belong to the cluster.
Clusters which have a majority of IoT flows are then labeled as IoT, while the others are labeled as
NON IoT. This is the supervised step of the approach: while clusters are identified based solely on
the flow features, the destination of the cluster is determined based on the previous knowledge of the
flow classification.

The first set of experiments makes use of the initial dataset, comprising mostly the simulated IoT
flows. We expect clustering to work reasonably on this set, at least for the IoT traffic, since the virtual
sensors are less diverse than actual sensors. The distribution of the flow parameters can be shown
in Weka through the “Visualize” tab, which displays the position of each element of the dataset as a
function of every pair of two attributes. Figure 5.1 shows an example of a two-dimensional plot of the
acknowledge rate from the client (X axis) and from the server (Y axis), with IoT traffic in blue, and
non-IoT traffic in red. One can clearly make out areas where the IoT traffic is more concentrated,
which are good candidates for a cluster.

The results are presented in Table 5.3, which shows which of the clusters (its index) were labeled
as IoT (contained a majority of IoT flows), with the corresponding number of actual IoT flows and
NON IoT flows that it contains. With 2 clusters, none of the clusters has a majority of IoT flows,
so all flows are classified as NON IoT. As the number of cluster increases, a few clusters appear with
a majority of IoT flows, and are therefore labeled as IoT. For instance, with 50 clusters, 4 clusters
are labeled as IoT (those with index 12, 29, 33 and 47). We observe that the number of IoT flows
correctly categorized as IoT flows increases up to 50 clusters. Increasing the number of clusters gives
no improvement, in fact the number slightly decreases. The number of NON IoT flows incorrectly
categorized as IoT, on the other hand, steadily decreases as the number of clusters increases. A
division in 50 clusters seems to provide the best trade off. Figure 5.2 shows in dark color the four
clusters labeled as IoT traffic for the 50-cluster case. Comparing with Figure 5.1, it is clear that most
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Figure 5.1: Acknowledge rate of the client (X asix) and of the server (Y axis). IoT traffic is in blue,
non-IoT traffic in red. Does not include Australian dataset.

of the actual IoT traffic is included in the clusters. However, some flows are missed, while a few extra
ones are included. Increasing the number of clusters does provide better granularity, however this
may increase the computational complexity of classification. To determine the cluster membership,
one has to compute the distance of a flow from the computed cluster centers. On the other hand,
because we have a binary classification, there are opportunities to prune the decision algorithm, and
avoid checking the distance to clusters once it is determined that a flow does not belong to any of the
IoT clusters, which are few compared to the overall number. An alternative approach is to generate
a decision tree using the labeling obtained from clustering (as opposed to the original labeling), to
automatically select the best decision points in terms of the traffic attributes. The evaluation of this
strategy is part of our future work.

Table 5.4 shows more in detail the results of clustering. The first column reports the number of
clusters. The second and third columns report the confusion matrix: for each class (shown in the last
column), the table shows the number of flows that were included in a cluster which was labeled as
IoT or NON IoT, respectively. The following four columns give a summary of the performance: we
compute the True Positive (TP) and the False Positive (FP) rates, as well as the Precision and Recall
measures for both IoT and NON IoT flows. The third row for each experiment is a weighted average of
the values. As discussed, with 2 clusters all flows are classified as NON IoT. This is equivalent to the
ZeroR method discussed above, and therefore corresponds to the baseline. As the number of cluster
increases, we get a better Recall for the IoT flows, reaching a maximum of 96.6% for the division in 50
clusters. As we increase the number of clusters, the overall performance slightly increases, although
we are less accurate on the IoT flow.

We have conducted the same analysis including the 15,000 flows from the Australian deployment.
The expectation is that the results will be somewhat less satisfactory, because of the increased diversity
of the devices in use. Figure 5.3 shows the same distribution of acknowledge rate from client (X axis)
and server (Y axis) for this case. While there still are areas which are clearly identifiable, overall
the distribution of IoT flows is much more dispersed. Indeed, for the 50-cluster experiment, we find
9 clusters which contain a majority of IoT flows for a total of only 13266 out of 22843 flows. The
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Table 5.3: IoT clusters for different number of clusters.

Clusters Cluster index IoT flows NON IoT flows

2
Total 0 0

5 0 3006 863
Total 3006 863

10 0 3006 454
8 3107 680

Total 6113 1134

20 12 3107 495
13 3003 360

Total 6110 855

30 4 1392 440
12 3106 209
29 2259 292

Total 6757 941

50 12 3106 231
29 2215 280
33 1384 246
47 791 147

Total 7496 904

70 12 3106 159
29 323 0
47 748 134
50 1935 287
62 1377 205

Total 7489 785

100 12 2811 142
29 231 0
50 223 0
73 968 44
79 295 0
82 411 172
83 709 136
99 1833 287

Total 7481 781

confusion matrix is therefore far from ideal, as shown by the following table which includes the accuracy
details.

Clusters IoT NON IoT TP rate FP rate Precision Recall MCC Class

50 13266 9577 58.1% 5.4% 77.9% 58.1% 58.6% IoT
3767 65590 94.6% 41.9% 87.3% 94.6% 58.6% NON IoT

90.9% 38.3% 86.3% 90.9% 58.6% Average
100 15001 7842 65.7% 3.4% 86.4% 65.7% 68.8% IoT

2353 67004 96.6% 34.3% 89.5% 96.6% 68.8% NON IoT
93.5% 31.2% 89.2% 93.5% 68.8% Average

The situation slightly improves when using 100 clusters, as shown above, however the precision is
still fairly low, and the computational complexity of determining cluster membership increases. One
of the reason why clustering does not provide good performance in this case is that the different
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Figure 5.2: Acknowledge rate of the client (X asix) and of the server (Y axis). IoT labeled clusters
shown in dark color, non-IoT clusters in light green. Does not include Australian dataset.

Table 5.4: Clustering results

Clusters IoT NON IoT TP rate FP rate Precision Recall MCC Class

2 0 7762 0.0% 0.0% 0.0% 0.0% 0.0% IoT
0 69357 1.0% 1.0% 89.9% 100.0% 0.0% NON IoT

89.9% 89.9% 80.9% 89.9% 0.0% Average
5 3006 4756 38.7% 1.2% 77.7% 38.7% 51.7% IoT

863 68494 98.8% 61.3% 93.5% 98.8% 51.7% NON IoT
92.7% 55.2% 91.9% 92.7% 51.7% Average

10 6113 1649 78.8% 1.6% 84.4% 78.8% 79.5% IoT
1134 68223 98.4% 21.2% 97.6% 98.4% 79.5% NON IoT

96.4% 19.3% 96.3% 96.4% 79.5% Average
20 6110 1652 78.7% 1.2% 87.7% 78.7% 81.3% IoT

855 68502 98.8% 21.3% 97.6% 98.8% 81.3% NON IoT
96.7% 19.3% 96.6% 96.7% 81.3% Average

30 6757 1005 87.1% 1.4% 87.8% 87.1% 86.0% IoT
941 68416 98.6% 12.9% 98.6% 98.6% 86.0% NON IoT

97.5% 11.8% 97.5% 97.5% 86.0% Average
50 7496 266 96.6% 1.3% 89.2% 96.6% 92.0% IoT

904 68453 98.7% 3.4% 99.6% 98.7% 92.0% NON IoT
98.5% 3.2% 98.6% 98.5% 92.0% Average

70 7489 273 96.5% 1.1% 90.5% 96.5% 92.7% IoT
785 68572 98.9% 3.5% 99.6% 98.9% 92.7% NON IoT

98.6% 3.3% 98.7% 98.6% 92.7% Average
100 7481 281 96.4% 1.1% 90.5% 96.4% 92.7% IoT

781 68576 98.9% 3.6% 99.6% 98.9% 92.7% NON IoT
98.6% 3.4% 98.7% 98.6% 92.7% Average

features contribute symmetrically to the Euclidean distance from the cluster centroid. This is less of
a concern with more homogeneous features, but induces confusion when traffic has a higher degree of
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Figure 5.3: Acknowledge rate of the client (X asix) and of the server (Y axis). IoT traffic is in blue,
non-IoT traffic in red. Includes Australian dataset.

overlapping. In the next section we explore other classification methods, which can selectively favor
different features to achieve better performance.

5.3 Classification
Our second approach is to consider supervised learning algorithms, trained with our dataset. We have
used several methods, which are provided by Weka, and computed their performance using 10-fold
cross validation. We consider each method in the following subsections. The basic idea is to use
decision procedures that can represent nonlinear boundaries across the feature space.

5.3.1 Multilevel Perceptron

A Multilevel Perceptron is a neural network that contains one or more internal layers. We have
constructed and evaluated three different neural network configurations, varying the number of neurons
in the hidden layer:

• NN10: one hidden layer with 10 neurons;

• NN20: one hidden layer with 20 neurons;

• NN10.10: two hidden layers with 10 neurons each;

All networks have two output neurons that provide the classification result. The results are summarized
in Table 5.5, where we again consider the simulated and the complete dataset separately.

The results show that the neural network classifier behaves better than clustering. The accuracy
is rather high for the dataset with the simulated traffic, while it is less satisfactory for the complete
dataset with real traffic, although still superior to clustering. The adoption of a wider hidden layer
provides some limited improvement, while going from one to two hidden layers (with a constant number
of neurons) does not change the results appreciably. A deep neural network may be able to extract
more significant features from the attributes.
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Table 5.5: Results of the Neural Network classifier

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

NN10 7550 212 97.3% 0.1% 99.4% 97.3% 98.1% IoT
Simulated 49 69308 99.9% 2.7% 99.7% 99.9% 98.1% NON IoT

99.7% 2.5% 99.7% 99.7% 98.1% Average

NN20 7578 184 97.6% 0.1% 99.3% 97.6% 98.3% IoT
Simulated 52 69305 99.9% 2.4% 99.7% 99.9% 98.3% NON IoT

99.7% 2.1% 99.7% 99.7% 98.3% Average

NN10.10 7573 189 97.6% 0.1% 99.1% 97.6% 98.2% IoT
Simulated 68 69289 99.9% 2.4% 99.7% 99.9% 98.2% NON IoT

99.7% 2.2% 99.7% 99.7% 98.2% Average

NN10 17940 4903 78.5% 2.0% 92.9% 78.5% 81.2% IoT
Complete 1381 67976 98.0% 21.5% 93.3% 98.0% 81.2% NON IoT

93.2% 16.6% 93.2% 93.0% 81.2% Average

NN20 18677 4166 81.8% 1.7% 94.1% 81.8% 84.1% IoT
Complete 1169 68188 98.3% 18.2% 94.2% 98.3% 84.1% NON IoT

94.2% 14.1% 94.2% 94.2% 84.1% Average

NN10.10 18697 4146 81.9% 2.6% 91.2% 81.9% 82.3% IoT
Complete 1801 67556 97.4% 18.1% 94.2% 97.4% 82.3% NON IoT

93.5% 14.3% 93.5% 93.5% 82.3% Average

NN30 18751 4092 82.1% 1.4% 94.9% 82.1% 84.8% IoT
Complete 1005 68352 98.6% 17.9% 94.4% 98.6% 84.8% NON IoT

94.5% 13.8% 94.5% 94.5% 84.8% Average

5.3.2 Support Vector Machines

In a simple linear classifier, the boundaries between classes are straight lines, which are too simple
for our application. A Support Vector Machine (SVM) uses linear models, however it transform the
input space through a nonlinear mapping. Hence, the linear model in the new space is no longer linear
when mapped back in the original space. The results achieved by this classifier, shown in Table 5.6,

Table 5.6: Results of the Support Vector Machine classifier

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

SVM 3894 3868 50.2% 0.1% 97.4% 50.2% 67.9% IoT
Simulated 104 69253 99.9% 49.8% 94.7% 99.9% 67.9% NON IoT

94.8% 44.8% 95.0% 94.8% 67.9% Average

are not particularly encouraging. It has been implemented with the default Weka parameters for the
simulated dataset only.

5.3.3 Näıve Bayes

The Näıve Bayes method is based on Bayes’s rule and “näıvely” assumes independence of the at-
tributes. The assumption that attributes are independent is simplistic, however the obtained classifier
is simple to implement, and often works well when tested on actual datasets. This is not unfortunately
the case for our traffic data. Even with only the simulated flows, while IoT flows are mostly correctly
classified, traditional traffic is often misinterpreted as IoT traffic. The results are shown below:

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

Näıve Bayes 7651 111 98.6% 21.2% 34.2% 98.6% 51.3% IoT
Simulated 14703 54654 78.8% 1.4% 99.8% 78.8% 51.3% NON IoT

80.8% 3.4% 93.2% 80.8% 51.3% Average
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5.3.4 J48 Classification Tree

Classification trees operate by selecting a path through a tree, branching at every node by comparing
the value of one of the parameters against a particular threshold. A result is obtained upon reach-
ing a leaf of the tree. The branching variable and the threshold at each node are the parameters
learned during training. In particular, we use the J48 algorithm, a Java implementation of the C4.5
algorithm [25].

Classification trees have been shown to perform well in protocol recognition [21]. One of the
advantages of this approach is that recognition does not require complex mathematical operations,
other than the comparison of parameters with some constant value. Thus, from this point of view,
they are particularly well suited to the implementation on network processors, which are often not
optimized for math algorithms. In addition, traversing the tree is typically fast, an important feature
when operating at line speed.

We have generated several classification tree, for the initial simulated dataset and for the complete
dataset. We have also analyzed the influence of the different parameters on both performance and
tree size. As usual, the accuracy is evaluated through the resulting confusion matrix using 10-fold
cross validation. Tree size, on the other hand, can be evaluated in terms of number of nodes and tree
depth.

Our first experiment deals with the simulated and the complete dataset using the full set of
attributes. The trees performs particularly well, as shown in Table 5.7 where the confusion matrix
highlights that only a few of the flows are missclassified. In particular, the performance is superior

Table 5.7: Accuracy of the classification trees with all attributes.

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

J48 7686 76 99.0% 0.1% 99.4% 99.0% 99.1% IoT
Simulated 47 69310 99.9% 1.0% 99.9% 99.9% 99.1% NON IoT

99.8% 0.9% 99.8% 99.8% 99.1% Average
J48 22449 394 98.3% 0.5% 98.5% 98.3% 97.8% IoT

Complete 345 69012 99.5% 1.7% 99.4% 99.5% 97.8% NON IoT
99.2% 1.4% 99.2% 99.2% 97.8% Average

to any of the methods that we have analyzed so far, with an average precision and recall that exceed
99% for both datasets. By way of example, Figure 5.4 shows the tree generated for the simulated case.
The green leaves represent the NON IoT classification, while the yellow boxes the IoT. The internal
nodes indicate the test variable and the condition, with the branches recording the outcome of the
condition. The tree can also be shown in textual form, as shown below (beginning of the tree only),
which is easier to read for analysis.

J48 pruned tree

------------------

rate_ack_s:32 <= 0.730766

| s_rtt_min:59 <= 0.026

| | c_rtt_std:54 <= 1.685583

| | | rate_ack_c:15 <= 0.482757: NON_IoT (2419.0)

| | | rate_ack_c:15 > 0.482757

| | | | rate_pkt_c:17 <= 0.547618

| | | | | rate_pkt_c:17 <= 0.49624: NON_IoT (250.0)

| | | | | rate_pkt_c:17 > 0.49624

| | | | | | rate_ack_c:15 <= 0.629627: NON_IoT (211.0/2.0)

| | | | | | rate_ack_c:15 > 0.629627: IoT (16.0/1.0)

| | | | rate_pkt_c:17 > 0.547618

| | | | | rate_bytes_c:16 <= 0.03462: NON_IoT (16.0)

| | | | | rate_bytes_c:16 > 0.03462

| | | | | | s_rtt_avg:58 <= 7.940603

| | | | | | | rate_bytes_c:16 <= 0.655367: IoT (55.0/1.0)

| | | | | | | rate_bytes_c:16 > 0.655367: NON_IoT (3.0/1.0)

| | | | | | s_rtt_avg:58 > 7.940603

| | | | | | | rate_ack_s:32 <= 0.190475: NON_IoT (11.0)
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Figure 5.4: The generated J48 classification tree for the simulated dataset.

| | | | | | | rate_ack_s:32 > 0.190475: IoT (3.0)

| | c_rtt_std:54 > 1.685583

| | | rate_pkt_s:34 <= 0.483871

| | | | rate_ack_c:15 <= 0.466666

| | | | | c_rtt_std:54 <= 23.365853

. . .

Notice how the leaves include not only the classification label, but also (in parenthesis) the number
of flows of the class (and, if present, of the other class) in the training set that lead to the leaf. This
number is shown also in each of the leaves on Figure 5.4 (although the size of the figure makes it
barely readable).

Table 5.8 shows the tree information in terms of computational complexity. The first column

Table 5.8: Complexity of the classification trees with all attributes.

Config Size Leaves Min depth Max depth Avg depth

J48 Simulated 125 63 1 11 4.4
J48 Complete 635 318 2 23 7.4

reports the total size of the tree (number of nodes), while the second column counts the number of
leaves in the tree. The size of the tree gives an estimate of the amount of memory required to store
the tree information. The following three columns provide information regarding the depth of the
tree: the minimum and the maximum depth to reach a leaf, as well as the average, where the depth is
weighted by the number of flows in the training set that are associated with each particular leaf. The
data shows that the lower variability associated with the simulated flows results in a much smaller
and shallower tree for classification.

It is interesting to study the influence of each attribute on the classification accuracy. This could
be useful, for instance, to select only a subset of the attributes that provide most of the performance.
In fact, while a smaller subset does not necessarily imply a smaller tree, however it does require fewer
resources to compute the statistics during operation.

To select the most relevant attributes, we proceed in two ways. The first is a greedy search,
whereby we evaluate the classification performance using progressively more attributes. Hence, we
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start by evaluating the performance of all trees that use only one attribute, and keep the attribute
that provides the best performance (we rank the trees on the basis of their MCC). Then, we evaluate
all trees with two attributes, having fixed the first in the previous step. We continue this way until
we see that the performance is sufficiently high. The results of this search for both the simulated and
complete datasets are shown in Table 5.9. The results show that performance increases quickly with

Table 5.9: Greedy search for best attribute.

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

J48 7411 351 95.5% 0.7% 93.8% 95.5% 94.0% IoT
Simulated 487 68870 99.3% 4.5% 99.5% 99.3% 94.0% NON IoT
Attr.: 8 98.9% 4.1% 98.9% 98.9% 94.0% Average

J48 7598 164 97.9% 0.1% 98.9% 97.9% 98.2% IoT
Simulated 84 69273 99.9% 2.1% 99.8% 99.9% 98.2% NON IoT
Attr.: 8,2 99.7% 1.9% 99.7% 99.7% 98.2% Average

J48 7657 105 98.6% 0.1% 99.4% 98.6% 98.9% IoT
Simulated 49 69308 99.9% 1.4% 99.8% 99.9% 98.9% NON IoT

Attr.: 8,2,1 99.8% 1.2% 99.8% 99.8% 98.9% Average
J48 7672 90 98.8% 0.1% 99.5% 98.8% 99.1% IoT

Simulated 42 69315 99.9% 1.2% 99.9% 99.9% 99.1% NON IoT
Attr.: 8,2,1,3 99.8% 1.0% 99.8% 99.8% 99.1% Average

J48 19290 3553 84.4% 6.5% 81.2% 84.4% 77.0% IoT
Complete 4475 64882 93.5% 15.6% 94.8% 93.5% 77.0% NON IoT
Attr.: 8 91.3% 13.3% 91.4% 91.3% 77.0% Average

J48 21950 893 96.1% 1.3% 96.2% 96.1% 94.9% IoT
Complete 868 68489 98.7% 3.9% 98.7% 98.7% 94.9% NON IoT
Attr.: 8,12 98.1% 3.3% 98.1% 98.1% 94.9% Average

J48 22334 509 97.8% 0.6% 98.1% 97.8% 97.3% IoT
Complete 430 68927 99.4% 2.2% 99.3% 99.4% 97.3% NON IoT

Attr.: 8,12,2 99.0% 1.8% 99.0% 99.0% 97.3% Average
J48 22393 450 98.0% 0.5% 98.4% 98.0% 97.6% IoT

Complete 370 68987 99.5% 2.0% 99.4% 99.5% 97.6% NON IoT
Attr.: 8,12,2,1 99.1% 1.6% 99.1% 99.1% 97.6% Average

the addition of more attributes. In both the simulated and the complete dataset, attributes 1, 2 and 8
are selected among the first four. These correspond to the fraction of acknowledge from the client to
the server (1), the fraction of bytes from client to server (2), and the client minimum round trip time
(8). In the simulated case, attribute number 3, the fraction of packets from client to server, completes
the set, whereas for the complete case attribute 12, minimum server round trip time, is used. The size
of the trees corresponding to the different choices of attributes is shown in Table 5.10.

Table 5.10: Complexity of the classification trees with selected attributes.

Config Size Leaves

J48 Simulated, Attr.: 8 27 14
J48 Simulated, Attr.: 8,2 111 56

J48 Simulated, Attr.: 8,2,1 113 57
J48 Simulated, Attr.: 8,2,1,3 137 69

J48 Complete, Attr.: 8 99 50
J48 Complete, Attr.: 8,12 311 156

J48 Complete, Attr.: 8,12,2 533 267
J48 Complete, Attr.: 8,12,2,1 571 286
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The second mechanism for attribute selection makes use of the facility provided by the Weka
framework. The “Select attributes” tab can be used to explore the space of attributes using different
strategies. We perform a Wrapper Subset Evaluation, which is a scheme similar to the one employed
above, using a Greedy Step-wise incremental search. In all cases, we select the J48 algorithm for
evaluation. The results for the Simulated and the complete dataset are shown below:

Simulated dataset

Selected attributes: 1,2,3,6,7,8,11,13 : 8

rate_ack_c:15

rate_bytes_c:16

rate_pkt_c:17

rate_pkt_s:34

c_rtt_avg:51

c_rtt_min:52

s_rtt_avg:58

s_rtt_max:60

Complete dataset

Selected attributes: 1,2,3,4,5,8,9,12 : 8

rate_ack_c:15

rate_bytes_c:16

rate_pkt_c:17

rate_ack_s:32

rate_bytes_s:33

c_rtt_min:52

c_rtt_max:53

s_rtt_min:59

In both cases, Weka selects eight attributes out of the available 14, including the ones that we have
determined using the manual procedure above. The results of generating the classification tree, shown
in Table 5.11, are somewhat surprising. The accuracy is in fact slightly better than that of the tree that

Table 5.11: Classification tree performance, Weka selected attributes.

Config IoT NON IoT TP rate FP rate Precision Recall MCC Class

J48 7701 61 99.2% 0.1% 99.5% 99.2% 99.3% IoT
Simulated 36 69321 99.9% 0.8% 99.9% 99.9% 99.3% NON IoT

99.9% 0.7% 99.9% 99.9% 99.3% Average

J48 22475 368 98.4% 0.5% 98.6% 98.4% 98.0% IoT
Complete 315 69042 99.5% 1.6% 99.5% 99.5% 98.0% NON IoT

99.3% 1.3% 99.3% 99.3% 98.0% Average

uses all the attributes together. This may be an indication that there is some degree of “overfitting”,
i.e., that there are too many parameters to choose from.

5.4 Final Considerations
We have shown that semi-supervised clustering works reasonably well in the case of homogeneous
traffic. However, for the real world deployment clustering does not achieve satisfying performance. We
have then considered supervised methods, such as neural networks and classification trees. The results
of 10-fold cross validation show that classification trees provide the best results, with performance in
excess of 99% accuracy. Attribute selection is used to is used to narrow down the set of attributes
and to avoid overfitting. This was the first part of our work, in the next section we will explore the
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analysis of the packets frequency.

6 Preliminaries experiments on tem-
poral series construction

We start with the analysis of previous studies about the use of Fast Fourier Transform to detect
internet flows [17, 23, 29, 53]. In the first place, we have investigated to find the best features to
use to compute the Fast Fourier Transform. At first, we tried to extract for each flow, the number
of packets sent and received in a unit of time (sampling period). The main problem here was to
compare flows with different sampling periods, beacuse the different granularity gives not good results
in classifications with decision trees. Furthermore, we tried to use the same sampling period for each
flow, but the results have not so much improved. Secondly, we attempted to change the classification
method, trying to compute the euclidean distance between points of different FFT series. If the
euclidean distance was less than epsilon (threshold set by doing tests), then the two FFT series are
similar, otherwise not. The results with this classification method are discreet, the problem here is set
a balanced epsilon threshold to have not so much false positive, in this case many IoT flows classified
non-IoT or viceversa. At the end, we tried to construct series using the length and the inter-arrival-
time between packets. For this process, the classification with decision trees performs very well, using
both 10-fold cross validation or using testset from different environment. We analyse this method in
chapter 7. In the next sections, first we see an overview of Fast Fourier Transform, the datasets used,
a data visualization, and then, we analyse in depth the packets rate experiments and we’ll evaluate
the perfomance of them.

6.1 Fast Fourier Transform
The fast fourier transform is an optimized algorithm to compute the discrete fourier transform. The
DFT (discrete fourier transform) is defined as:

Xq =
N−1∑
k=0

xke
−j 2π

N
kq q = 0, 1, ..., N − 1 (6.1)

Where Xq is the frequency value at position q, xk is the time series at the k-th timestamp.

6.1.1 Event Based Sampling

The sample instant is sampled every time an event occurs [39]. An event is when the amplitude of
the signal passes a pre-defined level. The classical sampling technique measures the amplitude of a
continuous time signal y(t) at regular time intervals Ts.

yk = y(kTs), k = 1, 2...N (6.2)

In event based sampling the signal is sampled every time the amplitude of the signal passes certain
pre-defined levels

y(tk) = yk, k = 1, 2...N (6.3)

where yk is the pre-defined amplitudes recorded at time instants tk. It is also possible to consider the
event domain signal as a time domain signal with varying sample period.

6.2 Packet Rate Overview
We show different techniques to compute the input time series. We use two methods, the first, is set
a fixed sampling period Ts, the second was to set a variable sampling period Ts, and see how many
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packets are sent in this interval for both experiments.

6.2.1 Dataset preparation

For these preliminary experiments we used a small subset of australian dataset [48, 49, 47]. The total
of IoT flows used in this experiment is 520. Regarding the NON IoT flows, we use a .pcap collected
by me in a domestic environment. From them we extract a total of 320 NON IoT flows. For some of
those tests we used a small set of IoT simulated flows collected with MIMIC simulator [5].

6.2.2 Data visualization

As described previously one of the problem for our tests was to choose the sampling period. We
tried to do different proofs using a different sampling period for every test. First we tried to set
the sampling period to 100 microseconds, then to 200 microseconds and finally to 500 microseconds
and 1 millisecond respectively. Now we will visualize a flow of ”Amazon Echo”, an IoT device from
australian dataset [48, 47, 49], an IoT flow collected with MIMIC simulator [5], and a NON IoT flow
collected in browsing session in a domestic environment, sampled with different sampling period.

a

b

c d

Figure 6.1: Amazon Echo 100 microseconds: (a) Amazon Echo 200 microseconds: (b) Amazon Echo
500 microseconds: (c) Amazon Echo 1 millisecond: (d)
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a b

c d

Figure 6.2: MIMIC 100 microseconds: (a) MIMIC 200 microseconds: (b) MIMIC 500 microseconds:
(c) MIMIC 1 millisecond: (d)

a b

c d

Figure 6.3: NON IoT 100 microseconds: (a) NON IoT 200 microseconds: (b) NON IoT 500 microsec-
onds: (c) NON IoT 1 millisecond: (d)

We see in Figures 6.1 6.2 6.3 the different signals of the three different devices sampled with
different sampling periods, 100 microseconds, 200 microseconds, 500 microseconds and 1 millisecond
respectively. We can denote the differences between the sampling periods and the different granular-
ities. With smaller sampling periods we see more signal details, but for longer communications and
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when we have a long inter-arrival time between two packets we have to sample many times and most
of them gives us not informations. For istance if the inter-arrival time between two packets is 10
milliseconds, and the sampling period is 100 microseconds, we have 100 samplings without packets.
If the sampling period is too short we risk to have patterns like 0,0,0,...0. For this cases we need
to increase the sampling period but, having a sampling period too high, carries us to lose too many
details of the flow. For these reasons we need to find a good balance. Therefore to have a good balance
we tried to use this sampling period [29]:

T = 0.1(
D

n
) (6.4)

Where D is the duration of a connection, and n is the number of packets. The problem with this criteria
was to compare different signal with different granularity, indeed a variable sampling period show us
not good perfomance when we perform decision trees. We applied this criteria to the previous flows
showed in Figures 6.1 6.2 6.3. The IoT flow from australian dataset was sampled with a sampling
period of 555 microseconds, the IoT flow from MIMIC was sampled at 494 microseconds, and the
NON IoT flow was sampled with a sampling period of 31 milliseconds. In the Figure 6.4 we illustrate
the different signals.

b

c

Figure 6.4: Amazon IoT 555 microseconds: (a) MIMIC IoT 494 microseconds: (b) NON IoT 31
milliseconds: (c)

6.2.3 Packet Rate Procedure

As described in the previous section, the main problem was to choose the sampling period, because, if
it was too short and the time between two packets was too long, the number of bins were insufficient to
contain all the points. We set to 65536 the number of bins. Contrarily, if the sampling period was too
long, we loose many details of the signal, because a coarse granularity gives us not good performance.
If 65536 points were insufficient we used a divide et impera approach, fragmenting the signal in more
FFT.

Now we illustrate a plot that shows in detail the sampling and how the time series xk is composed.
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T represents the sampling period in time, instead on the y-axis we have the number of packets sent.
We set:

∆k = x(kT )− x((k − 1)T ), k = 1, 2...N (6.5)

Then we compute xk as:
xk = ∆k (6.6)

First of all, we have recorded 65536 points for every flows. Subsequently we have isolated N
peaks, first 50 peaks and then less, to try different configurations. The peaks are the points with the
maximum energy, and the highlights with more informations. Furthermore, the points before and after
the peak has not considerated. The peaks are used as input for training the random forest decision
tree.

6.2.4 Packet Rate Results

The training set is composed of 852 flows, 520 are IoT while 332 are non IoT. For this experiment first
we used respectively 50,30,10 peaks points taken by all the 65536 points of the spectrum. As algorithm
we used random forest provided by the weka tool and for evaluation 10-fold cross validation. We tried
different methods such as neural networks, but they performs worse than decision trees. The results
are discreet, with 50 peaks the correctly classified istances are 774 (90.84%) while the incorrectly
classified istance are 78 (9.15%) as shown in table 6.1.

Table 6.1: Results with 50 peaks

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 495 25 95.2% 16.0% 90.3% 95.2% 80.7%

NON IoT 279 54 84.0% 4.8% 91.8% 84.0% 80.7%
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Table 6.2: Results with 50 peaks

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

774 - 90.85% 78 - 9.15% 852 - 100%

The confusion matrix is:

Table 6.3: Confusion matrix with 50 peaks

NON IoT IoT Classified as

279 53 NON IoT
25 495 IoT

The results with 30 peaks are shown in the table 6.4. Comparing the results we see that there are
almost similar.

Table 6.4: Results with 30 peaks

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 491 29 94.4% 14.5% 91.1% 94.4% 80.9%

NON IoT 284 48 85.5% 5.6% 90.7% 85.5% 80.9%

Table 6.5: Results with 30 peaks

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

775 - 90.96% 77 - 9.04% 852 - 100%

The confusion matrix is:

Table 6.6: Confusion matrix with 30 peaks

NON IoT IoT Classified as

284 48 NON IoT
29 491 IoT

Finally we tried with 10 peaks as shown in table 6.7.

Table 6.7: Results with 10 peaks

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 491 29 94.4% 10.8% 93.2% 94.4% 83.9%

NON IoT 296 36 89.2% 5.6% 91.1% 89.2% 83.9%

Table 6.8: Results with 10 peaks

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

787 - 92.37% 65 - 7.63% 852 - 100%
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The confusion matrix is:

Table 6.9: Confusion matrix with 10 peaks

NON IoT IoT Classified as

296 36 NON IoT
29 491 IoT

We see that with 10 peaks the results improve, more non IoT flows are correctly classified compared
with 30 and 50 peaks.

6.2.5 Clustering

Moreover we tried to perform clustering using simple-k means algorithm. We instruct the algorithm to
ignore the IoT/NON IoT label given to each flow, making the approach unsupervised. The algorithm
will try to determine classes irrespective of the label that was assigned in the first place. Using
50 peaks as input we construct 20 cluster. Ideally, two clusters would be sufficient, but naturally
the unsupervised method is unable to aggregate IoT and non-IoT flows so that they are completely
separated. For every cluster we calculate how many IoT flows and how many non IoT flows are
collected in the same cluster. If IoT flows are more than non IoT, we classify the cluster as IoT
otherwise we classify them as non IoT.

The results are presented in Table 6.10, which shows for every cluster how the flows are distributed.

Table 6.10: Flow Distribution

Cluster index IoT flows NON IoT flows Total

0 1 1 2

1 9 42 51

2 1 1 2

3 12 28 40

4 3 18 21

5 3 21 24

6 2 11 13

7 14 7 21

8 8 1 9

9 28 4 32

10 1 0 1

11 2 1 3

12 262 25 287

13 3 0 3

14 43 22 21

15 41 120 161

16 44 18 62

17 20 9 29

18 4 1 5

19 40 3 43

We denote that without labels, clustering approach is not able to distinguish, using the 50 peaks
of the FFT, the IoT flows from NON IoT. The cluster with index 12 contains a majority of IoT flows
so we can label as IoT. On the other hand, an example of a cluster labeled as NON IoT is the number
15 when we have a majority of NON IoT flows. The mean of IoT flows per cluster is 59.1%.

6.2.6 Multilevel Perceptron

We have constructed and evaluated a neural network configuration, with one hidden layer with 26
neurons. All networks have two output neurons that provide the classification result. The results are
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summarized in Table 6.11.

Table 6.11: Results of the Neural Network classifier

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 446 74 85.8% 72.6% 64.9% 95.8% 16.3%

NON IoT 91 241 27.4% 14.2% 55.2% 27.4% 16.3%

Table 6.12: Results of the Neural Network classifier

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

537 - 63.02% 315 - 36.98% 852 - 100%

The confusion matrix is:

Table 6.13: Results of the Neural Network classifier

IoT NON IoT Class

446 74 IoT

241 91 NON IoT

In figure 6.5 we can see a piece of the neural network with one hidden layer with 26 neurons.

Figure 6.5: Neural network

6.2.7 Support Vector Machine

In a simple linear classifier, the boundaries between classes are straight lines, which are too simple
for our application. A Support Vector Machine (SVM) uses linear models, however it transform the
input space through a nonlinear mapping. Hence, the linear model in the new space is no longer linear
when mapped back in the original space.
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Table 6.14: Results of support vector machine

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 515 5 99.0% 95.5% 61.9% 99.0% 11.5%

NON IoT 15 317 4.5% 1.0% 75.0% 4.5% 11.5%

Table 6.15: Results of support vector machine

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

530 - 62.20% 322 - 37.80% 852 - 100%

The confusion matrix is:

Table 6.16: Results of support vector machine

IoT NON IoT Class

515 5 IoT

317 15 NON IoT

6.2.8 Näıve Bayes

The Näıve Bayes method is based on Bayes’s rule and “näıvely” assumes independence of the at-
tributes. The assumption that attributes are independent is simplistic, however the obtained classifier
is simple to implement, and often works well when tested on actual datasets.

Table 6.17: Näıve Bayes Results

Class Correct Wrong TP rate FP rate Precision Recall MCC

IoT 495 25 95.2% 91.6% 62.0% 95.2% 7.3%

NON IoT 28 304 8.4% 4.8% 52.8% 8.4% 7.3%

Table 6.18: Näıve Bayes Results

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

523 - 61.38% 329 - 38.62% 852 - 100%

The confusion matrix is:

Table 6.19: Näıve Bayes Results

IoT NON IoT Class

495 25 IoT

304 28 NON IoT
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6.2.9 Euclidean Distance Between FFT points

In this section we introduce a new version of Weka [38] modified by Anilkumar Patro for the Data
Mining class at WPI (Worcester Polytechnic Institute). This version of weka integrate the possibility
to compute the FFT directly inside the software. Starting from this modified version of Weka, we
tried another method to distinguish IoT flows from NON IoT, which consists to calculate the euclidean
distance between FFT points. The algorithm works in this way [42, 41]. Given a collection of time
series CS, in our case the collection is the number of packet sampling, a collection of time series
CT to be used as templates, a non-negative integer value r, and a non-negative real value epsilon.
As described previously, given a time series S (in the time domain), it transforms the time series
into a sequence FS (in the frequency domain) using the Fast Fourier Transformation and truncates
this resulting sequence by keeping just the first r coefficients. Given two sequences, it computes the
Euclidean distance between the sequences. For each template T in CT, it finds all the sequences in
CS that are within an epsilon distance from T. This should be done following this procedure:

• All time series in CS and all the templates in CT are transformed and truncated as described
above.

• For each transformed template FT:

– For each transformed time series FS:

∗ Compute the Euclidean distance between FT and FS.

∗ If this distance is less than or equal to epsilon

· Compute the Euclidean distance between T (the template before the transforma-
tion) and S (the time series before the transformation).

· If this distance is less than or equal to epsilon then output the fact that T and S
are ”similar”.

In our case we have done this procedure, first of all, we take in consideration all the IoT flows, and then
we calculate the average distance between all points of it. We use this average as epsilon parameter.
Then we calculate the average euclidean distance between a single non IoT flow and all IoT flows, if
the distance, is more than epsilon for at least one comparison, then the non IoT flow is not correctly
classified. We calculate the average euclidean distance between all the FFT points. In Cartesian
coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then
the distance (d) from p to q, or from q to p is given by the Pythagorean:

d(p, q) =

√√√√ N∑
i=1

(qi − pi)2 (6.7)

6.2.10 Euclidean Distance Between FFT points Results

The total number of flows for this experiment is 631, 476 IoT, and 155 non IoT. The number of IoT
flows correctly classified are 416 out of 476 (87%), whilst the number of non IoT correctly classified
are 30 out of 155 (19%). We remind, an IoT flow is correctly classified only if the distances from the
other IoT flows are less than epsilon, a non IoT flow is correctly classified if all the distances from all
IoT flows are greater or equal to epsilon. We tried to use differents epsilon parameters, but the results
didn’t improved. We denote that the IoT flows are almost correctly classified, instead for non IoT
flows performance are not good.
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7 Packet Length Spectral Analysis
This part of our work is explained in our under review journal article [14]. In our approach, we
construct a set of identifying features by computing the Fast Fourier Transform (FFT) spectrum of
the series of packet lengths of a communication flow in the frequency domain. The basis of this
technique was introduced by Liu et al., who consider the problem of classifying application traffic in
the context of an encrypted network [53]. In our case, we apply the technique to distinguishing between
IoT and non-IoT traffic, rather than to generic applications, and refine the method by considering
alternatively the client to server, the server to client or the inter-arrival time as the source of data.
This overcomes problems when the application does not transfer data, but only produces keep-alive
messages.

The following subsections describe our approach in detail.

7.1 Related Work
Several methods have been proposed in the literature for packet classification, and we refer the reader
to the existing literature for a systematic survey [35]. Here, we discuss the methods that are most
closely related to our work.

The first aspect that must be considered when dealing with behavioral classification is an analysis of
the communication pattern of the traffic that we want to classify. Shafiq et al. [44] have conducted a set
of measurements to compare the machine-to-machine (M2M) traffic to traditional cellular smartphone
traffic. The dataset comprises flows exchanged over the cellular data network in the USA. The first
finding shows that M2M devices have a much larger uplink volume that downlink volume, in relative
terms, compared to smartphones. This suggests a considerably different use of the network, and
shows that M2M devices act more as content producers than consumers. The analysis also shows
that M2M traffic follows business hours, and is significantly reduced in the weekends, as opposed
to smartphone traffic which is virtually unchanged. Spectral analysis indicates strong periodicity in
M2M traffic, corresponding to time intervals such as 1 hour, 30 minutes or 15 minutes, suggesting
the timer-driven nature of M2M devices. Further analysis also reveals that devices are synchronized
and coordinated. This may create congestion in the infrastructure. This frequency components are
essentially absent from smartphone traffic. Sessions inter-arrival times are, instead, on average much
longer for M2M devices than for smartphone traffic. An extensive list of discriminators for the purpose
of flow classification is also presented by Moore et al. [32]. The dataset employed consists of general
traffic captured for 24 hours at the authors’ research facility. The report lists a total of 249 classes of
discriminators, or features, that could be employed by a classifier.

In our previous work, we have explored the use of several of these discriminators, including round-
trip time and fractions of uplink vs. downlink volume, through a decision tree classifier [19]. In this
paper, we adopt a different classification strategy that makes use of an ensemble of decision trees
(a random forest) to reduce the overfitting problem. At the same time, we considerably reduce the
number of features, and focus on only the spectral analysis of the packet length of the data flow.

Among the early applications, a few techniques were developed to discriminate between Machine-
to-Machine (M2M) traffic from remaining traffic (e.g., smartphones) specifically for cellular networks,
using machine learning algorithms [13, 26]. These methods evaluate several features related to the
traffic flow, including the number of packets, the data rate, the packet size, the inter packet-arrival
time, as well as the IP address and TCP/UDP port numbers. Several derived features can also be
computed from the flow data (averages, clusters, autocorrelations, etc.). Among the methods that
are considered, there are unsupervised learning algorithms, which directly create classification, such
as k-means, Expectation Maximization (EM) and Density-Based Spatial Clustering of Applications
with Noise; and supervised methods, which require a learning phase with ground truth, such as J48,
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Naive Bayesian (NB) and Support Vector Machine (SVM). In our previous work, we have employed
neural networks as a supervised learning method [36]. Two interesting results can be learned from
these studies. First, a limited number of features is sufficient to achieve a high level of classification
accuracy. Second, Decision trees (such as J48) appear to be the machine learning algorithms that
perform best in the studies.

Sivanathan et al. present a rich deployment consisting of a smart environment instrumented with
28 IoT devices, such as cameras, sensors, lights and smart plugs [48, 49, 47]. Traffic data was collected
for six months, and then characterized in terms of several features, including employed protocols, data
volume, port numbers and text patterns, activity and sleep cycles, and server queries. The authors
present a two-stage hierarchical classifier, which uses a Naive Bayes Multinomial classifier to analyze
domain names, port numbers and cypher suites, feeding a Random Forest classifier which integrates
the remaining flow features. The combined approach is trained to recognize the different devices and
shows a remarkable accuracy of 99.88%. A large part of our dataset is taken from this deployment,
whose traffic data is made available in the public domain by the authors for download. Unlike this
work, our aim is to classify traffic as traditional vs. IoT communication. More importantly, we focus
on much fewer characteristics that capture the essence of an IoT device, rather than its specific
implementation, and show that traffic patterns can be used as a distinguishing feature when analyzed
in the frequency domain.

A similar approach is proposed by Meidan et al., who measure a deployment of nine different IoT
devices connected in a network together with two PC’s and two smartphones [17]. The authors employ
features from the network, transport and application protocol layers, and classify the devices based
first on a single communication session, and then on multiple sessions, outlining how the thresholds
of the binary classifiers can be optimized to improve performance. While the reported classification
accuracy is high (in excess of 99%), the authors do not discuss the way the features were selected, nor
the kind of binary classifier and the way it is trained. This makes a comparison with other approaches
problematic. As in the previous case, in our work we choose to ignore the protocol parameters to
focus on the behavioral characteristics of the communication pattern, to abstract from the particular
device employed.

An interesting approach is presented by Lopez-Martin et al., who apply a combination of a recurrent
neural network (RNN) with a convolutional neural network (CNN) to perform traffic classification on a
large dataset extracted from the Spanish academic backbone network [27]. For every flow, the authors
consider the first 20 packets and collect a number of high-level header-based features, such as ports,
window size, payload size and inter-arrival time. The main difference with respect to the previous
approaches is that the features are organized in a time series, which is applied to the convolutional
neural network as if it were an image, to identify local correlations. They then analyze the importance
of each feature, by looking at the classification performance as they are added to or removed from the
set. Overall, an accuracy up to 96% is reported for this work, on a dataset with over 100 different
classification labels. In a different study, Yang et al. employ a Conditional Variational Autoencoder
to address the problem of imbalance in intrusion detection systems, and use a 6-layer Deep Neural
Network for classification [55]. As explained previously, our approach differs in the kind of features
that we select from the dataset, as we ignore all the header data.

A number of solutions make use of ensemble learning to avoid overfitting and enhance the gen-
eralization power of the model. For instance, Shahid et al. extract features such as packet size and
inter-arrival times of the first packets (10) of a flow from the network traffic of a smart home equipped
with four devices [45]. The authors evaluate six different classification algorithms, and show that
Random Forest performs best with an accuracy as high as 99.9%. One limitation of this study is the
low number of devices and the use of data from the same deployment for both training and test, in
the absence of non-IoT traffic. More recently, Amouri et al. have also employed a Random Forest
classification algorithm in the context of intrusion detection systems [11]. Thangavelu et al. perform
a similar study, focusing on scalability and the ability of the classifier to dynamically identify new
devices [50]. This is accomplished by clustering the flows first with a standard k-means algorithm,
then using a distributed semi-supervised clustering method by aggregating features. Clustering uses
features such as DNS queries, number of packets, activity period in a session, TLS packet length,
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flow duration, and number of packets of distinguished protocols such as DNS. The clusters are used as
aggregate features to then periodically train a supervised learning algorithm for the final classification,
which can therefore learn models for new devices. The approach is evaluated on an experimental setup
consisting of 16 IoT devices for smart homes, monitored over a period of one week. The results show
that a random forest classifier performs better than k-NN and Gaussian and Bernoulli naive Bayes
with a 98% accuracy.

Finally, Pinheiro et al. present an approach based on a reduced set of features, relying essentially
on the length of the packets (and their statistics, such as mean, mode and standard deviation) seen
in a 1-second sampling window of the flow, to perform classification and reduce latency [40]. The
selected features are independent of the specific header fields, so that classification can operate also
in the presence of encryption. Classification is performed in three stages, distinguishing IoT and non-
IoT traffic first, followed by the IoT device identification, and by the specific device event. Among
five different classifiers, including k-NN, Random Forest, Decision Tree, SVM and Majority Voting,
Random Forest is shown to perform best with accuracy reaching 96%. The approach is evaluated
on a testbed composed of three IoT devices, complemented by traffic from the mentioned dataset of
Sivanathan et al. [47]. Our approach is similar in spirit to this work, in that we rely on fewer attributes
that characterize the behavior of the communication pattern, rather than the protocol data. Our novel
contribution lies in the use of the frequency domain as an alternative space to perform the classification.

7.2 Dataset preparation and Baseline classification
Our analysis is based on a number of network captures codified as streams of packets encoded in
standard .pcap files which are subsequently filtered by our software and analyzed by machine learning
tools. Our main source of data is provided by a large dataset made available by the aforementioned
work of Sivanathan et al. [48, 49, 47]. The data is obtained by capturing the traffic of a deployment
of which we include 21 IoT devices and 7 non-IoT devices. We refer to this dataset as the Australia
dataset.

Let we see how many flows per australian IoT device we have in our dataset (see the table 7.1).
In total we have 93478 IoT flows of australian dataset. Then we added other IoT flows provided

by the USC/LANDER project [52, 51]. From this dataset, we extract traffic for 16 IoT devices, which
were captured from a College Campus network. Although some of the devices are similar to those
found in the first dataset, we do label them differently to account for potential different behaviors
related to their specific use. In the following, we refer to this dataset as the California dataset.

Let we see how many flows per californian IoT device we have in our dataset (see the table 7.2).
In total we have 3421 IoT flows of californian dataset. As previous we introduce simulated IoT

flows generated with MIMIC [5]. In this case we have a total of 6946 simulated IoT flows. We label
this flows as ”MIMIC”.

Regarding the NON IoT flows we use 19187 flows from Australian dataset for list of the devices
see the table 4.2. To these, we add 2313 flows from an experiment from the University of New
Brunswick [20](we to refer to this dataset as canadian dataset), and 10335 flows from a dataset collected
by the Network Monitoring and Measurements research group at the University of Napoli [15, 16] (we
refer to thi dataset as napoli dataset). Finally, we also include the “bigFlows” traffic dataset from
Appneta Tcpreplay with 13847 flows [12] (we refer to this dataset as bigflow dataset). In total, there
are 45682 non-IoT flows. Reccaping in table 7.4 we have:

7.2.1 Features computation

The procedure we follow to create the set of features is shown schematically in Figure 7.1. The data
is processed directly from the .pcap file using a dedicated software built on top of libpcap. The
analysis starts from a scan phase in which we identify and break up the flows, a check phase in which
we select the packets, and a computation phase in which we compute the Fourier Transform of the
data series. More specifically, in the first phase, we scan the flows to determine when to start the
computation. The scan operation works through the .pcap file considering one packet at a time. The
header is used to extract the timestamp and the length of the packet. The actual protocol headers in
the packet data are used to extract flow information, in order to group packets into flows according to
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Table 7.1: Australian IoT devices

IoT Device Number of flows

Smart Things 32
Amazon Echo 3095
Netatmo Welcome 1809
TP-Link Day Night Cloud camera 851
Samsung SmartCam 5368
Dropcam 256
Insteon Camera 2998
Withings Smart Baby Monitor 4333
Belkin Wemo switch 6288
TP-Link Smart plug 167
iHome 149
Belkin wemo motion sensor 62440
NEST Protect smoke alarm 67
Netatmo weather station 1659
Withings Smart scale 28
Withings Aura smart sleep sensor 2532
Light Bulbs LiFX Smart Bulb 29
Triby Speaker 137
PIX-STAR Photo-frame 818
HP Printer 63
Nest Dropcam 359
Total 93478

Table 7.2: Californian IoT devices

IoT Device Number of flows

HP Printer California 4
TP-Link Smart plug California 39
Amazon Dash Bounty Button 8
Foscam IP CAM2 87
Amazon Echo California 639
Google Smart Speaker 185
Amazon Fire SmartTVStick 396
Philips-Hue 261
AMCREST IP CAM 337
RENPHO Humidifier 5
Belkin Wemo switch California 45
TENVIS IP cam 1
D-link IP CAM 331
TP-Link SmartLightBulb California 4
Foscam IP CAM 1035
Wize IP CAM 44
Total 3421

their source and destination, or client and server. A flow is constructed starting from the IP addresses,
and the TCP flags, where the SYN flag denotes the beginning of the flow, and the FIN flag denotes
its end. Each flow is forwarded to the next phase of computation whenever we reach a FIN packet
(which identifies the end of the flows), or whenever we scan 256 packets from client to server, or if we
scan 256 from server to client while at the same time we see at least 128 packets from client to server.
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Table 7.3: MIMIC simulated IoT flows

IoT Device Number of flows

MIMIC 6946

Table 7.4: Total flows IoT

Dataset Total number of flows

Australia IoT flows 93478
California IoT flows 3421
MIMIC IoT simulated flow 6946
Australia NON IoT flows 19187
Canadian NON IoT flows 2313
Napoli NON IoT flows 10335
Bigflows NON IoT flows 13847
Total IoT 103845
Total NON IoT 45682
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Figure 7.1: Data acquisition phases and features computation

The reason we do this is that we have found experimentally that the packets going from the client
to the server provide a higher distinguishing power than the reverse direction. Note also that flows
longer than 256 packets are broken up into different samples of length 256. This has the advantage
of reducing the latency to obtain the classification results as well as its computational complexity.
Conversely, flows that do not reach 256 packets at the FIN are padded with zeros to reach the desired
length. This is necessary, as the FFT algorithm requires always the same number of input values.

During the second phase, we check the length of the packets for information content. For length,
we denote the size of the payload, excluding the base protocol headers (IP, TCP and UDP). If the
sequence of packets from client to server consists of only empty payloads, we check the packets in
the reverse direction. If these are also empty, then we use the packet inter-arrival times, computed
from their timestamps, of the client to server packets as the data, since the payload provides no useful
information, while the periodicity is used as a discriminator.

The FFT is computed on the selected data by a dedicated software library [4] and produces a
symmetric spectrum of 256 elements, of which only the right 128 values are retained. The computation
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follows the traditional formulation

Xk =
N−1∑
n=0

xne
−i2πkn/N ,

where xn are the selected packet payload lengths in the flow, N is the number of samples (256 in our
case), and Xk are the spectrum output coefficients. In particular, we use the magnitude ||Xk||2 of the
spectrum, which is proportional to the power content at each specific frequency. The computation of
the spectrum resembles the application of the first layers of a convolutional neural network, except that
the filter are fixed and not learned from the data. This, on the other hand, simplifies both training and
inference. Having characterized each flow with its FFT, we label the data by matching the Ethernet
MAC address of the packets to those of the devices present in the network. The FFT coefficients
and the labels are then assembled into an .arff file that is given as input to Weka [9], which in turn
partitions the data into training, validation and test sets and performs the model optimization. At
the end of the process, the tool provides the performance metrics from cross validation and testing,
as discussed in the next section.

7.3 Results
In this section, we summarize the results obtained by training a Random Forest classifier with the
data acquired using the procedure outlined in the previous section. We evaluate the classification
accuracy using 10-fold cross validation. With this method, the dataset is divided into 10 random
subsets, which are alternatively used for training and for determining the classification accuracy. The
results from ten different rounds are then averaged to give the final metrics. Because our dataset is
somewhat skewed towards the IoT class, an evaluation based on accuracy alone, i.e., the ratio between
the correctly classified flows and the total number of flows, is unable to provide a proper picture of
the performance of the classifier. For this reason, in addition to True Positives, False Positives and
False Negatives, we employ the following metrics [21]:

• Precision: for a given class, it is the ratio of its True Positives and the sum of True Positives
and False Positive (i.e., a sample of another class that is labeled as one of this class).

• Recall: for a given class, it is the ratio of the True Positives and the sum of True Positives and
False Negatives (i.e., a sample of this class is labeled as not of this class).

• Matthews correlation coefficient (MCC): the MCC returns a value between -1 and +1, where +1
represents a perfect prediction, 0 is no better than a random prediction and -1 indicates total
disagreement between prediction and observation.

The Matthews correlation coefficient measure is particularly significant for binary classification (for
instance, when we distinguish between IoT and non-IoT classes) especially when the classes are of
different size as in our case. In addition to these, one alternative measure is the F-Measure, a widely
used metric in classification, which weighs both Precision and Recall in a single metric by taking the
harmonic mean: 2 x Recall x Precision / (Recall + Precision). When running the 10-fold validation
procedure, the Weka tool automatically returns these measures averaged over the different iterations
of the process.

7.3.1 Data visualization

It is useful to visualize the data features that correspond to the packet flows of different devices,
to appreciate the distinguishing power of the transformed signal. In this section we discuss a few
examples, where we show and compare the time series as well as the frequency spectra of selected
flows.

Figure 7.2 to Figure 7.8 show both the series of the payload (on the left) and its FFT, limited
to one side of the symmetric magnitude of the spectrum (on the right). We see that for short flows,
the “energy” of the packets is spread across the entire spectrum with a shape that depends on the
number of peaks that are found in the time series. These cases are shown in Figure 7.2 and Figure 7.3.
The energy in the spectrum, i.e., the magnitude of each frequency component, depends on the size of
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the payloads in the flow, and this constitutes another difference than can be used by the classifier to
distinguish the flows. This is true in all the examples shown.
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Figure 7.2: Withings Baby monitor: (a) Payload time series. (b) Frequency series.
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Figure 7.3: PIX-STAR Photo Frame: (a) Payload time series. (b) Frequency series.

Figure 7.4 and Figure 7.5 show the spectrum of somewhat longer payload series, with limited
regularities. These kind of spectra are also spread out, but are more concentrated around certain
specific frequencies that distinguish the nature of the traffic. On the other hand, traffic that is
characterized by strong regularities gives rise to precise peaks in the corresponding spectrum. This
case is shown for instance in Figure 7.6, where the spectrum shows peaks at very specific frequencies,
on top of a noisy background that depends on the small variabilities in the data. The shape of the
spectrum is clearly very different compared to the previous cases.
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Figure 7.4: Amazon Fire SmartTVStick: (a) Payload time series. (b) Frequency series.
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Figure 7.5: RENPHO Humidifier: (a) Payload time series. (b) Frequency series.
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Figure 7.6: Triby Speaker: (a) Payload time series. (b) Frequency series.

Finally, longer payload series with recurring and closer regularities result in denser peaks in the
spectrum, as shown in Figure 7.7 and to a lesser extent in Figure 7.8. This last example is more
difficult to characterize in terms of a definitive shape, but at the same time can be easily set apart
from the more distinctive patterns exhibited by the other devices.
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Figure 7.7: TP-Link Smart Plug: (a) Payload time series. (b) Frequency series.
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Figure 7.8: Amazon Echo: (a) Payload time series. (b) Frequency series.

Then we tried to visualize graphically the inter-arrival series. The inter-arrival time series are very
variable, this is the reason for which the classification performs worse with this feature. In figure 7.9
we see the differences of inter-arrival time between flows generated by the same devices. For this two
devices we can see that the difference are not so substantial.

a b

Figure 7.9: (a) Belkin wemo motion sensor. (b) Belkin wemo switch.

Furthermore, in figures 7.10 7.11 7.12 we see other inter-arrival time frequencies.

a b

Figure 7.10: (a) Amazon Echo. (b) Pix-star photo frame.
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a b

Figure 7.11: (a) Samsung Smartcam. (b) Triby speaker

a b

Figure 7.12: (a) Withings Smart baby monitor. (b) Renpho umidifier

7.3.2 Classification results

In this section we present the results of the classification algorithm evaluated using the 10-fold cross
validation technique. For classification, we have used a Random Forest classifier. This classifier is
an example of an ensemble algorithm: instead of a giant decision tree, which may easily overfit the
data, the Random Forest is composed of a number of simpler decision trees, each providing its own
classification. The overall results corresponds to the majority voting of the individual trees. Because
the trees are simpler, they also result in a simpler hypothesis function, reducing the overfitting problem.
In our case, we have instructed the Weka tool to construct a Random Forest with 100 trees.

We have divided the evaluation into two main parts, each composed of three different mixes of the
dataset. In the first part, we evaluate in particular the ability of the classifier to distinguish among
the different IoT devices. Each flow in the dataset is therefore labeled with the device name, and the
classifier is trained to distinguish the individual labels. In a second set of experimental evaluation we
introduce also the traditional non-IoT traffic. In this case, we evaluate both a classifier that is able to
distinguish among the different devices, as well as a classifier that simply distinguishes between the
IoT and the non-IoT class. The following two sections present the details of the evaluation.

7.3.3 Classification of individual devices

We train three different classifiers to evaluate the classification performance on different datasets. In
the first two cases we look at the classifier using the Australia and the California datasets individually.
The third classifier is instead trained on the combined dataset, including the simulated flows from
the MIMIC Simulator. The results for these experiments in terms of Precision, Recall and MCC are
shown in Tables 7.5, 7.8 and 7.11, while Tables 7.7, 7.10 and 7.12 show the corresponding accuracy.
We show also the different confusion matrix in tables 7.6 7.9 The results are especially positive for
the Australia dataset, which comprises the majority of the flows. In particular, the False Positive rate
is very low, and the MCC is close to 1, indicating a high degree of reliability (see Table 7.5). The
overall accuracy for this dataset come in excess of 99% (Table 7.7).
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The California dataset, which is much smaller in size, gives a mixed outcome when considered alone.
The break-up of the classification results in Table 7.8 shows that a few of the devices are difficult to
recognize, especially when the corresponding number of flows in the training set is particularly low. In
this case, the 10-fold cross validation may at times fail to include the flows in the actual training set.
This indicates that the classifier needs a sufficient number of examples to correctly identify devices
which have a low utilization of the network. The overall accuracy, in this case is much lower at 86.52%
and the MCC only achieves a value of 84.2%.

Table 7.5: Classification performance for the Australia dataset, IoT only

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 235 21 91.8% 0.0% 88.0% 91.8% 89.9%

Smart Things 23 9 71.9% 0.0% 100% 71.9% 84.8%

Withings Smart baby monitor 4328 5 99.9% 0.0% 99.9% 99.9% 99.9%

Belkin Wemo Motion Sensor 62413 27 100.0% 1.6% 99.2% 100.0% 98.7%

Samsung SmartCam 5357 11 99.8% 0.0% 99.4% 99.8% 99.6%

Belkin Wemo Switch 6253 35 99.4% 0.0% 99.7% 99.4% 99.5%

PIX-STAR Photo frame 812 6 99.3% 0.0% 99.3% 99.3% 99.3%

Amazon Echo 3028 67 97.8% 0.1% 98.0% 97.8% 97.8%

TP-Link Smart Plug 166 1 99.4% 0.0% 96.5% 99.4% 97.9%

Netatmo weather station 1657 2 99.9% 0.0% 99.9% 99.9% 99.9%

TP-Link DayNight CloudCam 819 32 96.2% 0.0% 99.4% 96.2% 97.8%

Netatmo Welcome 1796 13 99.3% 0.0% 98.5% 99.3% 98.9%

Withings Smart Scale 26 2 92.9% 0.0% 100% 92.9% 96.4%

Triby Speaker 122 15 89.1% 0.0% 93.8% 89.1% 91.4%

NEST Protect smoke alarm 60 7 89.6% 0.0% 100% 89.6% 94.6%

HP printer 61 2 96.8% 0.0% 98.4% 96.8% 97.6%

Insteon Camera 2998 0 100% 0.0% 99.8% 100% 99.9%

Withings AuraSmartSleepSensor 2062 470 81.4% 0.0% 99.1% 81.4% 89.6%

iHome 139 10 93.3% 0.0% 98.6% 93.3% 95.9%

Light Bulbs LiFX SmartBulb 23 6 79.3% 0.0% 95.8% 79.3% 87.2%

Nest Dropcam 336 23 93.6% 0.0% 93.1% 93.6% 93.3%

Weighted Avg. 92714 764 99.2% 1.1% 99.2% 99.2% 98.6%

Table 7.6: Confusion matrix for the Australia dataset, IoT only

a b c d e f g h i j k l m n o p q r s t u Classified as

235 0 0 1 0 0 1 0 0 0 0 3 0 0 0 0 0 4 0 1 11 a = Dropcam

8 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 b = Smart Things

0 0 4328 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 0 0 c = Withings Smart baby monitor

0 0 0 62413 2 18 0 5 0 0 1 1 0 0 0 0 0 0 0 0 0 d = Belkin Wemo Motion Sensor

1 0 0 1 5357 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 e = Samsung SmartCam

0 0 0 25 0 6253 0 5 0 0 1 1 0 0 0 0 0 2 1 0 0 f = Belkin Wemo Switch

0 0 0 0 0 0 812 0 0 0 0 5 0 0 0 0 0 1 0 0 0 g = PIX-STAR Photo frame

1 0 0 10 25 0 1 3028 0 0 1 7 0 5 0 0 6 2 0 0 9 h = Amazon Echo

0 0 0 0 0 0 0 1 166 0 0 0 0 0 0 0 0 0 0 0 0 i = TP-Link Smart Plug

0 0 0 0 0 0 0 0 0 1657 1 0 0 0 0 0 0 0 0 0 1 j = Netatmo weather station

14 0 0 1 3 0 1 6 3 1 819 0 0 1 0 0 0 2 0 0 0 k = TP-Link DayNight CloudCam

0 0 0 6 0 0 2 1 0 0 0 1796 0 0 0 0 0 2 0 0 2 l = Netatmo Welcome

0 0 0 0 0 0 0 0 0 0 0 2 26 0 0 0 0 0 0 0 0 m = Withings Smart Scale

2 0 0 0 1 0 0 8 0 1 0 1 0 122 0 0 0 1 0 0 1 n = Triby Speaker

0 0 0 0 0 0 1 4 0 0 0 2 0 0 60 0 0 0 0 0 0 o = NEST Protect smoke alarm

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 61 0 0 0 0 0 p = HP printer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2998 0 0 0 0 q = Insteon Camera

0 0 4 461 2 1 0 0 0 0 0 0 0 0 0 0 0 2062 1 0 1 r = Withings AuraSmartSleepSensor

1 0 0 0 0 0 0 5 0 0 1 3 0 0 0 0 0 0 139 0 0 s = iHome

4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 23 0 t = Light Bulbs LiFX SmartBulb

1 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 1 0 0 336 u = Nest Dropcam
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Table 7.7: Australia dataset IoT only: overall accuracy

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

92714 - 99.18% 764 - 0.82% 93478 - 100%

Table 7.8: Classification performance for the California dataset, IoT only

Device Correct Wrong TP rate FP rate Precision Recall MCC

HP printer 2 2 50.0% 0.1% 50.0% 50.0% 49.9%

Amazon Dash Bounty Button 8 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo 622 17 97.3% 7.50% 74.8% 97.3% 81.6%

Amazon FireTVStick 200 196 50.5% 2.2% 74.6% 50.5% 57.5%

AMCREST IPCAM 284 53 84.3% 1.3% 87.4% 84.3% 84.3%

Belkin Wemo Switch 30 15 66.7% 0.2% 78.9% 66.7% 72.2%

D-link IPCAM 304 27 91.8% 0.8% 92.1% 91.8% 91.1%

FOSCAM IPCAM 978 57 94.5% 1.5% 96.5% 94.5% 93.6%

FOSCAM IPCAM vers2 52 35 59.8% 0.3% 83.9% 59.8% 70.2%

Google Smartspeaker 169 16 91.4% 1.1% 82.8% 91.4% 86.2%

Philips Hue 249 12 95.4% 0.4% 95.4% 95.4% 95.0%

RENPHO humidifier 0 5 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug 32 7 82.1% 0.2% 84.2% 82.1% 82.9%

TP-Link SmartLightBulb 2 2 50.0% 0.1% 50.0% 50.0% 49.9%

Wyze IPCAM 28 16 63.6% 0.1% 84.8% 63.6% 73.2%

Weighted Avg. 2960 461 86.5% 2.4% 86.6% 86.5% 84.2%

Table 7.9: Confusion matrix for the California dataset, IoT only

a b c d e f g h i j k l m n o p Classified as

2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 a = HP Printer

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b = Amazon Dash Bounty Button

0 0 622 15 1 0 0 0 0 0 0 0 0 0 1 0 c = Amazon Echo

1 0 150 200 6 3 7 5 2 13 1 0 0 4 0 4 d = Amazon FireTVStick

0 0 14 6 284 0 7 17 4 1 4 0 0 0 0 0 e = AMCREST IPCAM

0 0 2 5 0 30 3 5 0 0 0 0 0 0 0 0 f = Belkin Wemo Switch

0 0 5 5 6 2 304 3 2 2 0 0 1 1 0 0 g = D-link IPCAM

0 0 23 3 18 0 5 978 2 1 5 0 0 0 0 0 h = FOSCAM IPCAM

1 0 8 13 1 0 1 1 52 8 2 0 0 0 0 0 i = FOSCAM IPCAM vers2

0 0 2 3 3 2 1 2 0 169 0 0 0 1 1 1 j = Google Smartspeaker

0 0 0 5 4 0 0 1 0 2 249 0 0 0 0 0 k = Philips Hue

0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 l = RENPHO humidifier

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 m = TENVIS IPCAM

0 0 0 7 0 0 0 0 0 0 0 0 0 32 0 0 n = TP-Link Smart Plug

0 0 0 1 0 0 0 0 0 1 0 0 0 0 2 0 o = TP-Link SmartLightBulb

0 0 6 4 2 0 0 1 0 3 0 0 0 0 0 28 p = Wyze IPCAM

Table 7.10: California dataset IoT only: overall accuracy

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

2960 - 86.52% 461 - 13.48% 3421 - 100%

When combined (Table 7.11 and 7.12) the overall classification performance is acceptable, although
the data is obviously dominated by the much larger Australia dataset. In this case, we observe a slight
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increase in False Positive rate, although the weighted average fails to show this because the weight of
each device, especially those for which recognition is harder, is much lower with the large size of the
dataset. The tables also show that the algorithm performs extremely well on the MIMIC simulated
flows. These flows are clearly more homogeneous, indicating that traffic captured from real devices is
essential in the context of classification.

Table 7.11: Classification performance of the combined dataset, IoT only

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 235 21 91.8% 0.0% 88.0% 91.8% 89.9%

Smart Things 27 5 84.4% 0.0% 100% 84.4% 91.9%

Withings Smart baby monitor 4327 6 99.9% 0.0% 99.6% 99.9% 99.7%

Belkin Wemo Motion Sensor 62413 27 100.0% 1.3% 99.2% 100.0% 98.9%

Samsung SmartCam 5355 13 99.8% 0.0% 99.3% 99.8% 99.5%

Belkin Wemo Switch 6252 36 99.4% 0.0% 99.7% 99.4% 99.5%

PIX-STAR Photo frame 810 8 99.0% 0.0% 98.1% 99.0% 98.5%

Amazon Echo 3021 74 97.6% 0.2% 95.1% 97.6% 96.2%

TP-Link Smart Plug 166 1 99.4% 0.0% 96.5% 99.4% 97.9%

Netatmo weather station 1656 3 99.8% 0.0% 99.4% 99.8% 99.6%

TP-Link DayNight CloudCam 818 33 96.1% 0.0% 99.2% 96.1% 97.6%

Netatmo Welcome 1796 13 99.3% 0.0% 97.4% 99.3% 98.3%

Withings Smart Scale 23 5 82.1% 0.0% 100% 82.1% 90.6%

Triby Speaker 121 16 88.3% 0.0% 87.7% 88.3% 88.0%

NEST Protect smoke alarm 61 6 91.0% 0.0% 98.4% 91.0% 94.6%

HP printer 57 6 90.5% 0.0% 95.0% 90.5% 92.7%

Insteon Camera 2998 0 100% 0.0% 99.8% 100% 99.9%

Withings AuraSmartSleepSensor 2045 487 80.8% 0.0% 97.6% 80.8% 88.5%

iHome 136 13 91.3% 0.0% 97.8% 91.3% 94.5%

Light Bulbs LiFX SmartBulb 18 11 62.1% 0.0% 94.7% 62.1% 76.7%

Nest Dropcam 327 32 91.1% 0.0% 90.6% 91.1% 90.8%

MIMIC 6945 1 100% 0.0% 99.8% 100% 99.9%

HP printer Californian 2 2 50.0% 0.0% 40.0% 50.0% 44.7%

Amazon Dash Bounty Button 8 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo Californian 601 38 94.1% 0.2% 73.6% 94.1% 83.1%

Amazon FireTVStick 138 258 34.8% 0.0% 73.8% 34.8% 50.6%

AMCREST IPCAM 259 78 76.9% 0.0% 84.6% 76.9% 80.6%

Belkin Wemo Switch Californian 27 18 60.0% 0.0% 84.4% 60.0% 71.1%

D-link IPCAM 301 30 90.9% 0.0% 90.1% 90.9% 90.5%

FOSCAM IPCAM 955 80 92.3% 0.0% 96.8% 92.3% 94.4%

FOSCAM IPCAM vers2 50 37 57.5% 0.0% 86.2% 57.5% 70.4%

Google Smartspeaker 146 39 78.9% 0.0% 80.2% 78.9% 79.5%

Philips Hue 233 28 89.3% 0.0% 95.9% 89.3% 92.5%

RENPHO humidifier 0 5 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug Californian 34 5 87.2% 0.0% 82.9% 87.2% 85.0%

TP-Link SmartLightBulb 0 4 0.0% 0.0% 0.0% 0.0% 0.0%

Wyze IPCAM 19 25 43.2% 0.0% 90.5% 43.2% 62.5%

Weighted Avg. 102380 1465 98.6% 0.8% 98.6% 98.6% 98.1%

Table 7.12: Combined dataset IoT only: overall accuracy

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

102380 - 98.59% 1465 - 1.41% 103845 - 100%
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Traditional vs. IoT traffic classification

In this set of experiments we have trained the classifier to recognize the IoT devices together with the
non-IoT traffic lumped into a single class. The addition of the non-IoT traffic slightly degrades the
classification accuracy. Tables 7.13 7.14 shows the results, which indicate that the non-IoT flows can be
well separated from the individual devices. The overall accuracy is 137133/(137133+2027) = 98.54%.

Table 7.13: Australia IoT with non-IoT traffic

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 193 63 75.4% 0.0% 96.0% 75.4% 85.1%

Smart Things 24 8 75.0% 0.0% 100% 75.0% 86.6%

Withings Smart baby monitor 4303 30 99.3% 0.2% 95.1% 99.3% 97.1%

Belkin Wemo Motion Sensor 62395 45 99.9% 0.8% 99.1% 99.9% 99.1%

Samsung SmartCam 5353 15 99.7% 0.0% 99.2% 99.7% 99.4%

Belkin Wemo Switch 6247 41 99.3% 0.0% 99.8% 99.3% 99.5%

PIX-STAR Photo frame 794 24 97.1% 0.0% 99.3% 97.1% 98.1%

Amazon Echo 2907 188 93.9% 0.1% 97.1% 93.9% 95.4%

TP-Link Smart Plug 153 14 91.6% 0.0% 100.0% 91.6% 95.7%

Netatmo weather station 1653 6 99.6% 0.0% 100.0% 99.6% 99.8%

TP-Link DayNight CloudCam 802 49 94.2% 0.0% 99.4% 94.2% 96.8%

Netatmo Welcome 1770 39 97.8% 0.0% 99.7% 97.8% 98.8%

Withings Smart Scale 25 3 89.3% 0.0% 100% 89.3% 94.5%

Triby Speaker 88 49 64.2% 0.0% 91.7% 64.2% 76.7%

NEST Protect smoke alarm 50 17 74.6% 0.0% 100% 74.6% 86.4%

HP printer 52 11 82.5% 0.0% 100.0% 82.5% 90.8%

Insteon Camera 2998 0 100% 0.0% 99.7% 100% 99.9%

Withings AuraSmartSleepSensor 1862 670 73.5% 0.1% 91.2% 73.5% 81.6%

iHome 134 15 89.9% 0.0% 99.3% 89.9% 94.5%

Light Bulbs LiFX SmartBulb 0 29 0.0% 0.0% - 0.0% -

Nest Dropcam 243 116 67.7% 0.0% 97.2% 67.7% 81.1%

NON IoT 45087 595 98.7% 0.9% 98.1% 98.7% 97.6%

Weighted Avg. 137133 2027 98.5% 0.6% 98.5% 98.5% 98.0%

Table 7.14: Confusion matrix Australia IoT with non-IoT traffic

a b c d e f g h i j k l m n o p q r s t u v Classified as

193 0 0 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 5 a = Dropcam
6 24 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 b = Smart Things
0 0 4303 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 2 0 0 0 c = Withings Smart Baby Monitor
0 0 0 62395 2 14 0 2 0 0 0 0 0 27 0 0 0 0 0 0 0 0 d = Belkin wemo motion sensor
0 0 0 0 5353 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 e = Samsung SmartCam
0 0 0 18 0 6247 0 1 0 0 0 0 0 22 0 0 0 0 0 0 0 0 f = Belkin Wemo switch
0 0 0 0 0 0 794 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 g = PIX-STAR Photo-frame
0 0 0 10 25 0 0 2907 0 0 0 1 0 145 1 0 0 6 0 0 0 0 h = Amazon Echo
0 0 0 0 0 0 0 0 153 0 0 0 0 14 0 0 0 0 0 0 0 0 i = TP-Link Smart plug
0 0 0 0 0 0 0 0 0 1653 0 0 0 6 0 0 0 0 0 0 0 0 j = Netatmo weather station
0 0 0 0 3 0 0 1 0 0 802 0 0 45 0 0 0 0 0 0 0 0 k = TP-Link Day Night Cloud camera
0 0 0 6 0 0 0 0 0 0 0 1770 0 33 0 0 0 0 0 0 0 0 l = Netatmo Welcome
0 0 0 0 0 0 0 0 0 0 0 0 25 3 0 0 0 0 0 0 0 0 m = Withings Smart scale
0 0 219 83 12 1 6 77 0 0 5 4 0 45087 7 0 0 2 177 0 0 2 0 n = NON IOT
0 0 0 0 0 0 0 5 0 0 0 0 0 44 88 0 0 0 0 0 0 0 o = Triby Speaker
0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 50 0 0 0 0 0 0 p = NEST Protect smoke alarm
0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 52 0 0 0 0 0 q = HP Printer
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2998 0 0 0 0 r = Insteon Camera
0 0 3 461 1 0 0 0 0 0 0 0 0 204 0 0 0 0 1862 1 0 0 s = Withings Aura smart sleep sensor
0 0 0 0 1 0 0 2 0 0 0 0 0 12 0 0 0 0 0 134 0 0 t = iHome
0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 u = Light Bulbs LiFX Smart Bulb
2 0 0 0 0 0 0 0 0 0 0 0 0 114 0 0 0 0 0 0 0 243 v = Nest Dropcam

The experiment is repeated by giving the IoT devices a single label, to discriminate between
traditional and IoT traffic using binary classification. The results for the Australia dataset are shown
in Table 7.15. The classification achieves an accuracy of 99.0%, proving the high performance that
can be obtained by applying this method.
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Table 7.15: IoT Australia flows vs. NON IoT flows, binary classification

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 92750 728 99.2% 1.4% 99.3% 99.2% 97.7%

NON IoT 45022 660 98.6% 0.8% 98.4% 98.6% 97.7%

Weighted Avg. 137772 1388 99.0% 1.2% 99.0% 99.0% 97.7%

The same experiments are conducted on the California dataset, with the results shown in Ta-
bles 7.16 7.17 and 7.18. Similarly to the previous experiments, the accuracy is lower in this case.
Nevertheless, the classifier is still able to distinguish the non-IoT flows well, giving an overall accuracy
of 96.15% when the classifier distinguishes also the individual devices. The improvement however is
only apparent. In fact, clearly the accuracy has improved because of the non-IoT flows, while the
recognition of the devices has obviously worsen. In particular, several IoT flows are classified as non-
IoT, producing a large increase of the False Positive rate of the non-IoT classThis is highlighted by
the value of the MCC, whose weighted average (excluding the devices for which the computation does
not provide a result) at 68.9% is much lower than in the case of the Australia dataset.

Table 7.16: California IoT with non-IoT traffic

Device Correct Wrong TP rate FP rate Precision Recall MCC

HP printer 0 4 0.0% 0.0% - 0.0% -

Amazon Dash Bounty Button 8 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo 539 100 84.4% 0.3% 80.6% 84.4% 82.2%

Amazon FireTVStick 84 312 21.2% 0.0% 82.4% 21.2% 41.6%

AMCREST IPCAM 120 217 35.6% 0.1% 67.8% 35.6% 48.9%

Belkin Wemo Switch 21 24 46.7% 0.0% 95.5% 46.7% 66.7%

D-link IPCAM 255 76 77.0% 0.1% 84.2% 77.0% 80.4%

FOSCAM IPCAM 421 614 40.7% 0.3% 72.8% 40.7% 53.7%

FOSCAM IPCAM vers2 42 45 48.3% 0.0% 72.4% 48.3% 59.1%

Google Smartspeaker 99 86 53.5% 0.0% 99.0% 53.5% 72.7%

Philips Hue 231 30 88.5% 0.1% 84.0% 88.5% 86.1%

RENPHO humidifier 0 5 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug 30 9 76.9% 0.0% 88.2% 76.9% 82.4%

TP-Link SmartLightBulb 1 3 25.0% 0.0% 50.0% 25.0% 35.4%

Wyze IPCAM 16 28 36.4% 0.0% 94.1% 36.4% 58.5%

NON IoT 45346 336 99.3% 41.3% 97.0% 99.3% 69.2%

Weighted Avg. 47213 1890 96.2% 38.4% 95.8% 96.2% 68.9%
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Table 7.17: Confusion matrix california IoT with non-IoT traffic

a b c d e f g h i j k l m n o p q Classified as

45346 0 0 17 10 50 1 44 155 13 0 41 0 0 3 1 1 a = NON IOT

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b = HP Printer california

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c = Amazon Dash Bounty Button

99 0 0 539 1 0 0 0 0 0 0 0 0 0 0 0 0 d = Amazon Echo California

196 0 0 106 84 4 0 2 1 3 0 0 0 0 0 0 0 e = Amazon Fire SmartTVStick

213 0 0 0 1 120 0 2 0 0 0 1 0 0 0 0 0 f = AMCREST IP CAM

21 0 0 0 2 0 21 0 1 0 0 0 0 0 0 0 0 g = Belkin Wemo switch california

72 0 0 0 1 1 0 255 0 0 0 1 0 0 1 0 0 h = D-Link IP CAM

612 0 0 1 0 0 0 0 421 0 0 1 0 0 0 0 0 i = Foscam IP CAM

38 0 0 4 3 0 0 0 0 42 0 0 0 0 0 0 0 j = Foscam IPCam2

86 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 k = Google SmartSpeaker

28 0 0 0 0 2 0 0 0 0 0 231 0 0 0 0 0 l = Philips-Hue

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m = RENPHO Humidifier

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n = TENVIS IPCam

9 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 o = TP-Link Smart plug california

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 p = TPLink SmartLightBulb california

26 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 16 q = Wyze IPCam

The binary classification results for the California dataset are shown in Table 7.18. Again, while
accuracy is high, the MCC is much lower at 70.6% due to the high False Positive rate.

Table 7.18: IoT California flows vs. NON IoT flows, binary classification

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 2124 1297 62.1% 0.9% 84.2% 62.1% 70.6%

NON IoT 45284 398 99.1% 37.9% 97.2% 99.1% 70.6%

Weighted Avg. 47408 1695 96.5% 35.3% 96.3% 96.5% 70.6%

Our final results considering the entire dataset, including the simulated flows, are shown in Ta-
ble 7.19 and 7.20. The accuracy for the recognition of the individual flows reaches 97.37% with an
MCC of 96.5%. This can be considered a good result, considering the large number of flows in the
dataset.

The results of binary classification with the entire dataset is finally shown in Table 7.20, with an
accuracy of 98.0% and an overall MCC of 95.3%, highlighting again the reliability of the classification
algorithm.
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Table 7.19: Combined IoT flows with NON IoT traffic

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 198 58 77.3% 0.0% 97.5% 77.3% 86.8%

Smart Things 26 6 81.3% 0.0% 100% 81.3% 90.1%

Withings Smart baby monitor 4303 30 99.3% 0.2% 94.9% 99.3% 97.0%

Belkin Wemo Motion Sensor 62392 48 99.9% 0.7% 99.0% 99.9% 99.1%

Samsung SmartCam 5350 18 99.7% 0.0% 99.1% 99.7% 99.4%

Belkin Wemo Switch 6248 40 99.4% 0.0% 99.6% 99.4% 99.5%

PIX-STAR Photo frame 792 26 96.8% 0.0% 99.2% 96.8% 98.0%

Amazon Echo 2905 190 93.9% 0.1% 96.2% 93.9% 94.9%

TP-Link Smart Plug 155 12 92.8% 0.0% 100.0% 92.8% 96.3%

Netatmo weather station 1649 10 99.4% 0.0% 100.0% 99.4% 99.7%

TP-Link DayNight CloudCam 801 50 94.1% 0.0% 98.9% 94.1% 96.5%

Netatmo Welcome 1773 36 98.0% 0.0% 99.6% 98.0% 98.8%

Withings Smart Scale 25 3 89.3% 0.0% 100% 89.3% 94.5%

Triby Speaker 91 46 66.4% 0.0% 91.0% 66.4% 77.7%

NEST Protect smoke alarm 51 16 76.1% 0.0% 98.1% 76.1% 86.4%

HP printer 48 15 76.2% 0.0% 100.0% 76.2% 87.3%

Insteon Camera 2998 0 100% 0.0% 99.7% 100% 99.9%

Withings AuraSmartSleepSensor 1859 673 73.4% 0.1% 90.8% 73.4% 81.4%

iHome 132 17 88.6% 0.0% 99.2% 88.6% 93.8%

Light Bulbs LiFX SmartBulb 0 29 0.0% 0.0% - 0.0% -

Nest Dropcam 258 101 71.9% 0.0% 98.1% 71.9% 83.9%

MIMIC 6941 5 99.9% 0.0% 99.9% 99.9% 99.9%

HP printer Californian 1 3 25.0% 0.0% 100.0% 25.0% 50.0%

Amazon Dash Bounty Button 8 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo Californian 540 99 84.5% 0.1% 77.5% 84.5% 80.8%

Amazon FireTVStick 82 314 20.7% 0.0% 82.0% 20.7% 41.1%

AMCREST IPCAM 123 214 36.5% 0.0% 67.2% 36.5% 49.4%

Belkin Wemo Switch Californian 21 24 46.7% 0.0% 95.5% 46.7% 66.7%

D-link IPCAM 259 72 78.2% 0.0% 83.0% 78.2% 80.6%

FOSCAM IPCAM 413 622 39.9% 0.1% 72.0% 39.9% 53.4%

FOSCAM IPCAM vers2 38 49 43.7% 0.0% 67.9% 43.7% 54.4%

Google Smartspeaker 95 90 51.4% 0.0% 96.9% 51.4% 70.5%

Philips Hue 225 36 86.2% 0.0% 84.9% 86.2% 85.5%

RENPHO humidifier 0 5 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug Californian 31 8 79.5% 0.0% 83.8% 79.5% 81.6%

TP-Link SmartLightBulb 0 4 0.0% 0.0% 0.0% 0.0% 0.0%

Wyze IPCAM 18 26 40.9% 0.0% 94.7% 40.9% 62.2%

NON IoT 44719 963 97.9% 2.1% 95.4% 97.9% 95.1%

Weighted Avg. 145568 3959 97.4% 0.9% 97.2% 97.4% 96.5%

Table 7.20: Combined flows vs. NON IoT flows, binary classification

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 102077 1768 98.3% 2.7% 98.8% 98.3% 95.3%

NON IoT 44448 1234 97.3% 1.7% 96.2% 97.3% 95.3%

Weighted Avg. 146525 3002 98.0% 2.4% 98.0 98.0% 95.3%

7.3.4 Test-set evaluation

The above results were obtained through 10-fold cross validation. Because we leave the parameters of
the models unchanged, this effectively partitions the dataset into a training and a test set, averaging the
results across the different folds. In the following section, we will use the cross-validation technique to
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tune the depth of the trees. In this case, we must set aside part of the dataset as a proper test set, which
is not used during the tuning operation, to avoid overestimating the classifier performance. We opt for
a 70%-30% split between training (used also in cross-validation) and test set, chosen randomly before
applying the entire procedure. For sanity check, we have run the training procedure and test evaluation
separately, without 10-fold cross validation, to verify that we obtain results that are consistent with
those reported in the previous section. In tables 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 we see
the new results. The results are similar to those of the 10-fold cross validation.

Table 7.21: Only australian IoT flows , classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 55 12 82.1% 0.0% 84.6% 82.1% 83.3%

Smart Things 9 6 60.0% 0.0% 100% 60.0% 77.5%

Withings Smart baby monitor 1212 1 99.9% 0.0% 99.8% 99.9% 99.9%

Belkin Wemo Motion Sensor 18830 23 99.9% 1.5% 99.3% 99.9% 98.7%

Samsung SmartCam 1582 5 99.7% 0.0% 99.3% 99.7% 99.5%

Belkin Wemo Switch 1867 11 99.4% 0.0% 99.2% 99.4% 99.3%

PIX-STAR Photo frame 242 2 99.2% 0.0% 98.4% 99.2% 98.8%

Amazon Echo 3028 871 97.5% 0.1% 96.8% 97.5% 97.1%

TP-Link Smart Plug 44 0 100.0% 0.0% 97.8% 100.0% 98.9%

Netatmo weather station 531 1 99.8% 0.0% 99.1% 99.8% 99.4%

TP-Link DayNight CloudCam 264 8 97.1% 0.0% 99.6% 97.1% 98.3%

Netatmo Welcome 542 3 99.4% 0.0% 98.9% 99.4% 99.2%

Withings Smart Scale 5 1 83.3% 0.0% 100% 83.3% 91.3%

Triby Speaker 43 6 87.8% 0.0% 97.7% 87.8% 92.6%

NEST Protect smoke alarm 17 1 94.4% 0.0% 100% 94.4% 97.2%

HP printer 24 0 100.0% 0.0% 100.0% 100.0% 100.0%

Insteon Camera 864 0 100% 0.0% 99.7% 100% 99.8%

Withings AuraSmartSleepSensor 650 130 83.3% 0.0% 99.1% 83.3% 90.6%

iHome 50 3 94.3% 0.0% 100.0% 94.3% 97.1%

Light Bulbs LiFX SmartBulb 3 1 75.0% 0.0% 60.0% 75.0% 67.1%

Nest Dropcam 6 98 94.2% 0.0% 96.1% 94.2% 95.1%

Weighted Avg. 27803 242 99.1% 1.1% 99.1% 99.1% 98.5%
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Table 7.22: Only australian IoT flows vs. NON IoT flows, classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 65 25 72.2% 0.0% 94.2% 72.2% 82.5%

Smart Things 7 3 70.0% 0.0% 100% 70.0% 83.7%

Withings Smart baby monitor 1268 5 99.6% 0.2% 94.6% 99.6% 97.0%

Belkin Wemo Motion Sensor 18558 13 99.9% 0.8% 99.1% 99.9% 99.1%

Samsung SmartCam 1671 3 99.8% 0.0% 99.2% 99.8% 99.5%

Belkin Wemo Switch 1928 15 99.2% 0.0% 99.8% 99.2% 99.5%

PIX-STAR Photo frame 238 11 95.6% 0.0% 99.6% 95.6% 97.5%

Amazon Echo 844 43 94.2% 0.1% 96.7% 94.2% 95.3%

TP-Link Smart Plug 40 6 87.0% 0.0% 100.0% 87.0% 93.2%

Netatmo weather station 508 6 98.8% 0.0% 100.0% 98.8% 99.4%

TP-Link DayNight CloudCam 258 19 93.1% 0.0% 98.9% 93.1% 95.9%

Netatmo Welcome 523 14 97.4% 0.0% 99.6% 97.4% 98.5%

Withings Smart Scale 5 1 83.3% 0.0% 100% 83.3% 91.3%

Triby Speaker 26 17 60.5% 0.0% 96.3% 60.5% 76.3%

NEST Protect smoke alarm 12 5 70.6% 0.0% 100% 70.6% 84.0%

HP printer 18 3 85.7% 0.0% 100.0% 85.7% 92.6%

Insteon Camera 924 0 100% 0.0% 99.8% 100% 99.9%

Withings AuraSmartSleepSensor 559 195 74.1% 0.1% 91.8% 74.1% 82.2%

iHome 41 5 89.1% 0.0% 100.0% 89.1% 94.4%

Light Bulbs LiFX SmartBulb 0 12 0.0% 0.0% - 0.0% -

Nest Dropcam 66 39 62.9% 0.0% 98.5% 62.9% 78.6%

NON IoT 45087 595 98.7% 1.0% 98.0% 98.7% 97.5%

Weighted Avg. 41114 629 98.5% 0.7% 98.4% 98.5% 98.0%

Table 7.23: Only australian IoT flows vs. NON IoT flows, binary classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 27787 221 99.2% 1.5% 99.3% 99.2% 97.7%

NON IoT 13529 206 98.5% 0.8% 98.4% 98.5% 97.7%

Weighted Avg. 41316 427 99.0% 1.3% 99.0% 99.0% 97.7%
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Table 7.24: Only californian IoT, classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

HP printer 0 0 0.0% 0.0% - 0.0% -

Amazon Dash Bounty Button 2 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo 181 7 96.3% 7.5% 74.2% 96.3% 83.8%

Amazon FireTVStick 48 62 43.5% 2.1% 71.6% 43.6% 52.9%

AMCREST IPCAM 87 19 82.1% 1.7% 84.5% 82.1% 81.4%

Belkin Wemo Switch 12 3 80.0% 0.3% 80.0% 80.0% 79.7%

D-link IPCAM 87 10 89.7% 0.8% 92.6% 89.7% 90.2%

FOSCAM IPCAM 285 16 94.7% 2.2% 94.7% 94.7% 94.7%

FOSCAM IPCAM vers2 21 12 63.6% 0.3% 87.5% 63.6% 73.9%

Google Smartspeaker 53 2 96.4% 1.2% 81.5% 96.4% 88.0%

Philips Hue 79 8 90.8% 1.3% 86.8% 90.8% 87.7%

RENPHO humidifier 0 1 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 0 0.0% 0.0% - 0.0% -

TP-Link Smart Plug 8 3 72.7% 0.1% 88.9% 72.7% 80.2%

TP-Link SmartLightBulb 0 1 0.0% 0.1% 0.0% 0.0% 0.0%

Wyze IPCAM 8 8 50.0% 0.1% 88.9% 50.0% 66.3%

Weighted Avg. 871 154 85.0% 2.7% 84.68 83.0% 83.66

Table 7.25: Only californian IoT flows vs. NON IoT flows, classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

HP printer 0 1 0.0% 0.0% - 0.0% -

Amazon Dash Bounty Button 4 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo 164 27 85.9% 0.3% 78.8% 85.9% 82.0%

Amazon FireTVStick 19 94 14.4% 0.0% 90.5% 14.4% 35.9%

AMCREST IPCAM 33 81 28.9% 0.1% 64.7% 28.9% 43.0%

Belkin Wemo Switch 6 6 50.0% 0.0% 85.7% 50.0% 65.4%

D-link IPCAM 75 16 82.4% 0.1% 84.3% 82.4% 83.2%

FOSCAM IPCAM 137 158 46.4% 0.3% 73.3% 46.4% 57.7%

FOSCAM IPCAM vers2 16 16 50.0% 0.0% 69.6% 50.0% 58.9%

Google Smartspeaker 30 28 51.7% 0.0% 100.0% 51.7% 71.9%

Philips Hue 66 12 84.6% 0.1% 86.6% 84.6% 85.6%

RENPHO humidifier 0 3 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug 3 4 57.1% 0.0% 66.7% 57.1% 61.7%

TP-Link SmartLightBulb 1 3 - - - - -

Wyze IPCAM 4 8 33.3% 0.0% 100.0% 33.3% 57.7%

NON IoT 13604 107 99.3% 41.1% 97.0% 99.3% 69.4%

Weighted Avg. 14162 573 96.1% 38.3% 95.7% 96.1% 69.0%

Table 7.26: Only Californian IoT flows vs. NON IoT flows, binary classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 644 387 62.5% 0.9% 84.1% 62.5% 70.8%

NON IoT 13582 122 99.1% 37.5% 97.2% 99.1% 70.8%

Weighted Avg. 14226 509 96.5% 35.0% 96.3% 96.5% 70.8%
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Table 7.27: Combined IoT flows, classification, 30% test

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 65 10 86.7% 0.0% 84.4% 86.7% 85.5%

Smart Things 5 3 62.5% 0.0% 100.0% 62.5% 79.1%

Withings Smart baby monitor 1287 1 99.9% 0.0% 99.5% 99.9% 99.7%

Belkin Wemo Motion Sensor 18720 10 99.9% 1.2% 99.2% 99.9% 98.9%

Samsung SmartCam 1631 2 99.9% 0.0% 99.5% 99.9% 99.6%

Belkin Wemo Switch 1923 6 99.7% 0.0% 99.6% 99.7% 99.6%

PIX-STAR Photo frame 227 3 98.7% 0.0% 98.7% 98.7% 98.7%

Amazon Echo 899 20 97.8% 0.2% 94.5% 97.8% 96.0%

TP-Link Smart Plug 41 1 97.6% 0.0% 95.3% 97.6% 96.5%

Netatmo weather station 531 2 99.6% 0.0% 99.4% 99.6% 99.5%

TP-Link DayNight CloudCam 235 16 93.6% 0.0% 98.7% 93.6% 96.1%

Netatmo Welcome 506 5 99.0% 0.1% 96.7% 99.0% 97.8%

Withings Smart Scale 7 0 100.0% 0.0% 100% 100.0% 100.0%

Triby Speaker 34 3 91.9% 0.0% 89.5% 91.9% 90.7%

NEST Protect smoke alarm 15 1 93.8% 0.0% 100.0% 93.8% 96.8%

HP printer 14 2 87.5% 0.0% 77.8% 87.5% 82.5%

Insteon Camera 878 0 100% 0.0% 99.8% 100% 99.9%

Withings AuraSmartSleepSensor 623 140 81.7% 0.1% 95.7% 81.7% 88.1%

iHome 48 6 88.9% 0.0% 94.1% 88.9% 91.5%

Light Bulbs LiFX SmartBulb 4 2 66.7% 0.0% 100.0% 66.7% 81.6%

Nest Dropcam 107 13 89.2% 0.0% 88.4% 89.2% 88.8%

MIMIC 2049 1 100% 0.0% 99.5% 100.0% 99.7%

HP printer Californian 0 0 0.0% 0.0% 0.0% 0.0% 0.0%

Amazon Dash Bounty Button 0 4 0.0% 0.0% 0.0% 0.0% 0.0%

Amazon Echo Californian 187 12 94.0% 0.2% 70.8% 94.0% 81.5%

Amazon FireTVStick 42 88 32.6% 0.0% 80.8% 32.6% 51.2%

AMCREST IPCAM 76 30 71.7% 0.0% 84.4% 71.7% 77.7%

Belkin Wemo Switch Californian 8 3 72.7% 0.0% 80.0% 72.7% 76.3%

D-link IPCAM 91 12 88.3% 0.0% 91.0% 88.3% 89.6%

FOSCAM IPCAM 294 27 91.6% 0.0% 97.4% 91.6% 94.4%

FOSCAM IPCAM vers2 21 11 65.6% 0.0% 77.8% 65.6% 71.4%

Google Smartspeaker 41 16 71.9% 0.0% 78.8% 71.9% 75.3%

Philips Hue 71 10 87.7% 0.0% 98.6% 87.7% 93.0%

RENPHO humidifier 0 1 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 0 0.0% 0.0% - 0.0% -

TP-Link Smart Plug Californian 4 1 80.0% 0.0% 66.7% 80.0% 73.0%

TP-Link SmartLightBulb 0 1 0.0% 0.0% 0.0% 0.0% 0.0%

Wyze IPCAM 8 8 50.0% 0.0% 100.0% 50.0% 70.7%

Weighted Avg. 30692 471 98.5% 0.7% 98.3% 98.5% 97.9%
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Table 7.28: Combined flows vs. NON IoT flows, classification, 30% test

Device Correct Wrong TP rate FP rate Precision Recall MCC

Dropcam 62 13 82.7% 0.0% 98.4% 82.7% 90.2%

Smart Things 7 2 77.8% 0.0% 100% 77.8% 88.2%

Withings Smart baby monitor 1295 8 99.3% 0.2% 94.3% 99.3% 96.6%

Belkin Wemo Motion Sensor 18738 12 99.9% 0.7% 99.0% 99.9% 99.1%

Samsung SmartCam 1574 4 99.7% 0.0% 99.2% 99.7% 99.5%

Belkin Wemo Switch 1848 14 99.2% 0.0% 99.9% 99.2% 99.5%

PIX-STAR Photo frame 229 11 95.4% 0.0% 99.1% 95.4% 97.2%

Amazon Echo 860 48 94.5% 0.1% 95.6% 94.5% 94.9%

TP-Link Smart Plug 57 3 95.0% 0.0% 100.0% 95.0% 97.5%

Netatmo weather station 504 2 99.6% 0.0% 100.0% 99.6% 99.8%

TP-Link DayNight CloudCam 229 18 92.7% 0.0% 98.3% 92.7% 95.4%

Netatmo Welcome 525 19 96.5% 0.0% 99.4% 96.5% 97.9%

Withings Smart Scale 13 1 92.9% 0.0% 100% 92.9% 96.4%

Triby Speaker 21 17 55.3% 0.0% 95.5% 55.3% 72.6%

NEST Protect smoke alarm 9 4 69.2% 0.0% 100.0% 69.2% 83.2%

HP printer 23 8 74.2% 0.0% 100.0% 74.2% 86.1%

Insteon Camera 914 0 100% 0.0% 99.7% 100% 99.8%

Withings AuraSmartSleepSensor 555 200 73.5% 0.1% 89.7% 73.5% 80.9%

iHome 41 3 93.2% 0.0% 100.0% 93.2% 96.5%

Light Bulbs LiFX SmartBulb 0 10 0.0% 0.0% - 0.0% -

Nest Dropcam 77 48 61.6% 0.0% 93.6% 61.6% 77.0%

MIMIC 2128 3 99.9% 0.0% 100.0% 99.9% 99.9%

HP printer Californian 0 0 - - - - -

Amazon Dash Bounty Button 2 0 100.0% 0.0% 100.0% 100.0% 100.0%

Amazon Echo Californian 161 37 81.3% 0.1% 77.0% 81.3% 79.0%

Amazon FireTVStick 20 68 18.5% 0.0% 80.0% 18.5% 38.4%

AMCREST IPCAM 34 65 36.5% 0.0% 67.2% 36.5% 49.4%

Belkin Wemo Switch Californian 8 11 42.1% 0.0% 80.0% 42.1% 58.0%

D-link IPCAM 80 26 75.5% 0.0% 86.0% 75.5% 80.5%

FOSCAM IPCAM 127 173 42.3% 0.1% 73.4% 42.3% 55.5%

FOSCAM IPCAM vers2 13 13 50.0% 0.0% 65.0% 50.0% 57.0%

Google Smartspeaker 30 31 49.2% 0.0% 93.8% 49.2% 67.9%

Philips Hue 78 13 85.7% 0.0% 88.6% 85.7% 87.1%

RENPHO humidifier 0 1 0.0% 0.0% - 0.0% -

TENVIS IPCAM 0 1 0.0% 0.0% - 0.0% -

TP-Link Smart Plug Californian 8 3 72.7% 0.0% 72.7% 72.7% 72.7%

TP-Link SmartLightBulb 0 1 0.0% 0.0% 0.0% 0.0% 0.0%

Wyze IPCAM 6 8 40.0% 0.0% 85.7% 40.0% 58.5%

NON IoT 13379 281 97.9% 2.1% 95.3% 97.9% 95.1%

Weighted Avg. 30692 471 98.5% 0.7% 97.0% 98.5% 96.5

Table 7.29: Combined flows vs. NON IoT flows, binary classification, 30% test set

Device Correct Wrong TP rate FP rate Precision Recall MCC

IoT 30659 530 98.3% 2.8% 98.8% 98.3% 95.2%

NON IoT 13290 381 97.2% 1.7% 96.2% 97.2% 95.2%

Weighted Avg. 43949 911 98.0% 2.5% 98.0% 98.0% 95.2%

7.3.5 Hyper-parameter Tuning

The previous results were obtained using the default settings for training the Random Forest classifier.
In this section we explore the impact of changing the maximum allowed depth of the trees. This could
be useful for two reasons. First, a larger depth leads to models with higher variance, making the
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classifier more prone to overfitting. Second, performance may tend to level off with tree depth. In
that case, choosing the smallest depth that provides acceptable performance can greatly simplify the
evaluation of the model, with lower computational complexity and lower latency.

As in the previous section, the analysis is conducted by splitting the dataset between 70% for
training and 30% for test. We analyze the performance of the classifier by performing 5-fold cross
validation on the training set (which is, therefore, automatically split between a proper training and
a validation set), with tree depth limited to 1, 2, 5, 10, 20, 40 and 80 levels. While we record all the
performance metrics, we report here only the MCC, as the other measures follow a similar pattern,
and use it to select the optimal depth. The test set is then used to quantify the actual performance
of the classifier for the selected depth.

Figure 7.13 shows the results for the IoT devices only, for the Australia, the California and the
combined datasets, for tree depth up to 40 levels (the values for higher depths do not change relative
to 40 levels, and are therefore not shown). The plot includes the results of cross-validation, as well as
the results on the test set for all tree depths, where the test set results are significant only after the
choice of depth (i.e., they are not used for tuning). In all cases, the performance levels off at a depth
of 10 levels, and does not exhibit overfitting. The California dataset, as observed in previous sections,
has the worst performance, and is considerably lower than the other cases at small tree depths. The
performance of the classifier on the test set, here as in the subsequent experiments, does not change
significantly relative to the cross validation.

Figure 7.14 shows the same data with the inclusion of the non-IoT flows, while Figure 7.15 illus-
trates the performance of the binary IoT/non-IoT classification. The non-IoT flows bring more variety
and negatively affect the performance: slightly for the Australia dataset, more significantly for the
California dataset. In this last case, tree depths less than 5 result in essentially a random classifier.
The combined dataset has better performance, largely because of the contribution of the Australia
dataset as discussed previously.
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Figure 7.13: MCC of training and test set as the tree depth varies from 1 to 40 for IoT only
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Figure 7.14: MCC of training and test set as the tree depth varies from 1 to 40 for IoT with non-IoT
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Figure 7.15: MCC of training and test set as the tree depth varies from 1 to 40 for IoT and non-IoT,
binary classification
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It is interesting to validate a classifier derived from one dataset on another dataset. The application
is problematic since the devices are not generally the same, but for a few exceptions. We have therefore
trained the classifier on the Australia dataset, and validated the model on the California dataset limited
to the common devices, i.e., the Belkin Wemo switch, the Amazon Echo and the TP-Link Smart plug,
which were given the same labels in the two datasets. The performance in terms of the MCC is shown
in Figure 7.16.
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Figure 7.16: Classifier trained on the Australia dataset, validated on the California dataset

The results lead to two observations. First, the classifier is sensitive to the specific deployment,
and does not perform as well on a different deployment, despite the use of the same devices. This
may be due to different configurations of the devices, which potentially interact with different servers,
altering the dynamics of the communication. More interestingly, we see that the classifier achieves the
best generalization at a depth in the range of 5 to 10 levels, with the performance on the validation
set decreasing for larger depths. This underscores some amount of variance when the model becomes
too complex.

7.3.6 Testset with non IoT

We tried to test our models with a testset composed of the NON IoT flows collected in a domestic
environment. We collected a total of 5587 test NON IoT flows.
We compared this testset with the following models:

• IoT-non IoT australian dataset only, devices

• IoT-non IoT australian dataset only, binary

• IoT-non IoT californian dataset only, devices

• IoT-non IoT californian dataset only, binary

• IoT-non IoT all datasets, devices

• IoT-non IoT all datasets, binary

• IoT-non IoT australian dataset only, devices

Table 7.30: IoT-non IoT australian flows compared with testset flows devices

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

5454 - 97.62% 133 - 2.38% 5587 - 100%

The confusion matrix is:
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Table 7.31: IoT-non IoT australian flows compared with testset flows devices

NON IoT IoT Classified as

5454 133 NON IoT
0 0 IoT

• IoT-non IoT australian dataset only, binary

Table 7.32: IoT-non IoT australian flows compared with testset flows binary

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

5110 - 91.46% 477 - 8.54% 5587 - 100%

The confusion matrix is:

Table 7.33: IoT-non IoT australian flows compared with testset flows binary

NON IoT IoT Classified as

5110 477 NON IoT
0 0 IoT

• IoT-non IoT californian dataset only, devices

Table 7.34: IoT-non IoT californian flows compared with testset flows devices

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

5270 - 94.33% 317 - 5.67% 5587 - 100%

The confusion matrix is:

Table 7.35: IoT-non IoT californian flows compared with testset flows devices

NON IoT IoT Classified as

5270 317 NON IoT
0 0 IoT

• IoT-non IoT californian dataset only, binary

Table 7.36: IoT-non IoT californian flows compared with testset flows binary

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

5105 - 91.37% 482 - 8.63% 5587 - 100%

The confusion matrix is:

Table 7.37: IoT-non IoT californian flows compared with testset flows binary

NON IoT IoT Classified as

5105 482 NON IoT
0 0 IoT

• IoT-non IoT all dataset only,devices
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Table 7.38: IoT-non IoT all flows compared with testset flows devices

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

5104 - 91.35% 483 - 8.65% 5587 - 100%

The confusion matrix is:

Table 7.39: IoT-non IoT all flows compared with testset flows devices

NON IoT IoT Classified as

5104 483 NON IoT
0 0 IoT

• IoT-non IoT all dataset only,binary

Table 7.40: IoT-non IoT all flows compared with testset flows binary

Correctly Classified Instances InCorrectly Classified Instances Total Number of Instances

4207 - 75.30% 1380 - 24.70% 5587 - 100%

The confusion matrix is:

Table 7.41: IoT-non IoT all flows compared with testset flows binary

NON IoT IoT Classified as

4207 1380 NON IoT
0 0 IoT

7.3.7 Discussion

The classification results shown in the previous sections highlight that the analysis of the series of
the payload lengths in the frequency domain provides high selectivity, with high overall accuracy and
MCC. On the other hand, the analysis also shows that smaller datasets may be unable to provide
sufficient training examples to reduce the classification error. In this case, the model may tend to
overfit the data, and the validation suffers. One possible remedy in these cases is to further reduce the
number of features. In a preliminary experiment, we have considered a reduced subset of the Australia
dataset corresponding to only three days of data capture with approximately 17,000 flows. We have
then isolated only a reduced number of peaks in the spectrum. The experiments show that using only
32, 16 or even 4 peaks reduces accuracy by only 0.2% points, showing that the highest values of the
spectrum carry the majority of the information. A more detailed evaluation of this approach is part
of our current and future work.

The classification accuracy and performance in terms of precision, recall and the other metrics that
we obtain is in line with the results obtained in our previous work [19], however we here use a very
different set of features. More specifically, we focus on simplified features based on the length of the
packets (in some cases complemented by the inter-arrival times) and further evaluate the performance
on a much larger dataset. This is convenient for both computational complexity, if the recognition
must be run in real time, and to handle flows that are obfuscated by encryption. A combined classifier
could also be used to increase the reliability. In addition, we have extended the classifier to distinguish
between the different classes of devices, a valuable information to adjust the network quality of service,
to detect anomalous behavior and therefore isolate compromised devices.

Other methods, discussed in Section 7.1, have also been presented in the literature that reach
high classification accuracy, selectivity and specificity [47, 45, 40, 28]. Our intention was not so much
improving the performance metrics, which arguably reach almost perfect classification in some of the
reported work, but rather achieve similar performance using a considerably reduced set of features
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that does not need header or payload inspection. By doing so, the classifier could be deployed also in
the presence of encryption. In addition, we study the performance of classification in the frequency
domain.

In our study we also explore the impact of tree depth in terms of classification performance. The
results show that relatively shallow trees already provide the bulk of the distinguishing power of the
method, while resulting in a much simpler implementation, essential when dealing with traffic in real
time. We have also considered applying the classifier obtained with one dataset to an entirely different
dataset. This, as far as we know, has never been attempted in the literature. The analysis, limited
to the common devices, shows that i) performance suffers, and ii) deep trees may overfit relative to
another dataset. The tree depth analysis identifies the optimal value for the hyper-parameter in this
case. Nevertheless, the models show some difficulty in generalizing, presumably because of the wide
differences in configurations and environment of operation. This aspect is largely unexplored in the
state of the art, and is hampered by the lack of appropriate labeled datasets. One mention is given
by Pinheiro et al. [40], who observe similar behavior with firmware updates or compromised devices,
and suggest, without going further, that unsupervised learning techniques could be used to address
the problem.
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8 Conclusions
Deep packet inspection can be applied whenever access to the transport payload is granted to the
application. However, encryption is increasingly adopted to protect the data. Depending on the level
of encryption, DPI might be rendered ineffective. In particular, if mechanisms such as TLS are used,
anything above the transport level is not accessible, leaving only address and port information visible.
Other methods, such IPsec and Virtual Private Networks (VPN) make DPI completely unusable, as
ports are invisible and traffic from different sources may be mixed in the same logical flow. Statistical
and behavioral classification can help overcome these difficulties. More specifically, these methods are
relatively insensitive to the application protocol in use. Hence, even generic HTTP connections could
be detected and classified correctly. In addition, they can work in the presence of encryption, as long
as the traffic maintains its peculiar characteristics. For example, a VPN that tunnels several flows
could easily confuse the best statistical and behavioral classifier. The downside of these methods is
that the system must store potentially substantial per-flow information, in order to build the necessary
parameters for identification. In addition, the classifier must generally be trained appropriately, which
requires generating or collecting representative labeled traffic. Shifts in traffic patterns may require
retraining the classification network, an operation which is difficult to perform on the fly. The other
disadvantage is that classification occurs some time after the beginning of the flow. This may be
inappropriate for applications where packets must be routed immediately depending on their type. In
the end, behavioral methods rely on distinctive communication patterns that help discriminate user
traffic from machine generated traffic. As IoT devices become more ”intelligent” and multi-function,
however, their traffic patterns become correspondingly more diverse and less predictable. Statistical
and behavioral classification are therefore expected to behave less accurately. Thus, in general, a
combination of techniques is likely to provide the best results, especially in terms of performance.
For instance, range-based classification and Bloom filters could be used for an initial screening of the
packets. This allows the system to perform a more in depth analysis to only those packets or flows
which are of more interest, or that defy a simpler mechanism. Regular expression can then be used for
payload inspection, when possible, while statistical and behavioral classification would be dedicated
to those flows that offer lower visibility. As line speeds increase, it is likely that a multiplicity of
approaches will be employed, together with increasing parallelism. In this work, we have studied a
statistical classification method to discriminate between IoT and non-IoT traffic, and to determine the
device that originates the communication flow. We have first presented and characterized our dataset,
collected from repositories made available in the public domain, discussed the tools we have used to
capture the data, generate the flows and their statistics, and construct the classification algorithms.
We have shown the features of different classes of devices, and discussed the classification performance
of the J48 and Random Forest algorithms using 10-fold cross validation.

Our future work is moving in two directions. The first is to explore the timing relation among
different flows attributed to the same device. The difficulty with this kind of analysis is that regularity
is seen across the flows which are opened and closed by a particular device. A different criterion must
therefore be employed. In the context of cellular networks, one can use a specific identifiers, like the
IMSI, to associate traffic to a device. At the same time, the same device, such as a smartphone, might
behave as both a “thing” (by using its sensors) and a traditional terminal, creating confusion or noise
in the classification. Another direction includes a form of dynamic learning to follows the evolution
of the behavior of devices, in a spirit similar to the self-learning classifier proposed by Grimaudo et
al. [22]. In our case, we could, in principle, evaluate the degree of confidence in classification by looking
at where in the tree the flows are classified. In fact, the tree identifies hypercubes in the attribute
space which divide the IoT from the non-IoT flows. The distance from the hypercube edge could be
considered a measure of confidence. Training could be performed at run-time, using flows classified
with high confidence as training data. Additional information, such as the port number (as used
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in [22]), could also be employed to estimate accuracy, when the information is available. When the
system observes that the overall classification confidence has decreased significantly, a new round of
supervised learning could be employed to restore the lost accuracy.
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